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Abstract We introduce a family of reversible fragmentating-coagulating pro-
cesses of particles of varying size-scaled diffusivity with strictly local interac-
tion on the real line as mathematically rigorous description of colloidal motion
of fluids. The associated measure valued process provides a weak solution of a
corrected Dean-Kawasaki equation for supercooled liquids without dissipation.
Our construction is based on the introduction and analysis of a fundamentally
new family of equilibrium measures for the associated dynamics and their
Dirichlet forms. We identify the intrinsic metric as the quadratic Wasserstein
distance, which makes the process a second non-trivial example of Wasserstein
diffusion.
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1 Introduction and Statement of main results

1.1 Motivation

This paper is a continuation in a series of studies started in [46] when we asked
for natural generalizations of Brownian motion of a single point to the case of
an infinite or diffuse interacting particle system with conserved total mass. As
critical consistency condition with respect to the trivial case of the empirical
(Dirac) measure following a single Brownian motion we put the requirement
that the local fluctuations of any such probability measure valued diffusion
{µt}t≥0 ∈ P(Rd) be governed by a Varadhan formula of the form

P{µt+ε ∈ A} ∼ exp

(
−d

2
W(µt, A)

2ε

)
, ε� 1, A ⊂ P(Rd),

where dW denotes the quadratic Wasserstein distance on P(Rd).
Physically, this means that the spatial fluctuations of such a measure valued

process µ· should become high at locations where density of µt is low and vice
versa, i.e. scaling of diffusivity is inverse proportional to density. On the level
of mathematical heuristics we can combine the required Wasserstein Varadhan
formula with Otto’s formal infinite dimensional Riemannian picture of optimal
transport [43] to obtain SPDE models of the form

dµt = F (µt)dt+ div(
√
µtdWt), µt ∈ P(Rd),

where dW· is a white noise vector field on Rd and F is a model dependent
drift operator. The canonical choice

F (µt) = β∆µt, β ≥ 0,

yields the so called Dean-Kawasaki equation for supercooled liquids appearing
in the physics literature [14, 29, 30, 8, 15, 16, 48, 40, 54] (see also [12, 11, 22]
for the regularised versions of the Dean-Kawasaki equation) but in [34, 33] we
show that this equation is either trivial or ill posed, depending on the value of
β. However, as shown in [46, 4], in d = 1 for β > 0, and more recently in [35] for
β = 0, the model has non-trivial martingale solutions if one admits a certain
additional nonlinear drift operator Γβ(µt)dt as correction. The correction is
the same for all β > 0 such that we arrive at the family of models

dµt = β∆µtdt+ Γi(µt)dt+ div(
√
µtdWt),

where i ∈ {0, 1} depending whether β = 0 or β > 0. The two expressions
for Γ0 and Γ1 are similar, but the constructions of the solutions for the two
cases are very different. In [46] we use abstract Dirichlet form methods, in
[35] we construct an explicit system of a continuum of coalescing Brownian
particles of infinitesimal initial mass which slow (i.e. cool) down as they ag-
gregate to bigger and bigger macro-particles before they eventually collapse
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to a single Brownian motion. At positive time the system consists of finitely
many particles of different sizes almost surely, such that the distribution

Γ0(µt) =
1

2

∑
z∈supp(µt)

(δz)
′′

is well defined for t > 0.
The point of departure of this work is the question whether there is a

reversible counterpart to the coalescing particle model for the β = 0 case. In
terms of the analogy to the Arratia flow [6] (see also [7, 21, 18, 19, 47, 51, 42,
53, 59, 56, 57, 36, 37, 23, 55, 49]) this means that we ask for a Brownian Net
[55] type extension of the modified Arratia flow from [32, 41, 35] which should
then include also particle break-ups but still satisfies the characteristic scaling
requirement regarding the diffusivity of the aggregate particles. We note that
very recently a particle model without interaction in dimension d ≥ 2 which
satisfies a similar martingale problem was considered in [50].

1.2 Heuristic Description of the Model

The main result of this work is an affirmative answer. We give it by construct-
ing in rather explicit way a new family of measure valued processes on the real
line which solve the same martingale problem for β = 0 and Γi = Γ0 as the
modified Arratia flow in [35], which satisfy the Wasserstein Varadhan formula
and which are reversible. In this sense the new processes interpolate between
the two previously known models.

As in the case of the modified Arratia flow, the model describes the motion
of an uncountable collection of particles which are parametrized by the unit
interval as index set and move on the real axis. It is assumed that the initial
parametrization is monotone in particle location. The dynamics will preserve
the monotone alignment, hence a state of the system at time t is given by a
monotone real function Xt : (0, 1) 7→ R, i.e. Xt(u) is the position of particle
u at time t. The corresponding empirical measure of the state is given by
µt := (Xt)#(Leb) ∈ P(R) (image measure of Lebesgue measure Leb on [0, 1]
under Xt). We call the atoms of µt empirical particles, the size of an atom
located in x ∈ R at time t given by m(x, t) = Leb{u ∈ (0, 1) : Xt(u) = x}.

The basic idea for the construction of µ· is to use (sticky) reflection inter-
action when particles are at the same location. As for the ’stickiness’, particles
sitting at the same location will be subject to the same random, i.e. Gaussian
perturbation of their location. Since they share a common perturbation the
net volatility of this perturbation is scaled in inverse proportional way by the
total mass of particles occupying the same spot, i.e. the size of the empirical
particle at that location. Second, the random perturbations at different spots
are independent.

For the ’reflection’ part of the interaction we assign once and for all times
to each particle a certain number

[0, 1] 3 u 7→ ξ(u) ∈ R,
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which we call its interaction potential. The function ξ is a free parameter of
the model.

In addition to the random forcing described above, each particle will also
experience a drift force given by the difference between its own interaction
potential and the average interaction potential among all particles occupying
the same location. As a consequence, if all occupants of a certain spot have
the same interaction potential, none of them will feel any drift. (As they also
share the same random forcing, in this case they will move but stay together
for all future times.) Conversely, big differences in interaction potential lead
to strong drift apart among the particles sitting at the same location.

The most physical choice for ξ is that of a linear function ξ(u) = λu with
some λ ≥ 0. In this case the break-up mechanism for an empirical particle
depends only on its size. As a result, λ controls the strength of the break-up
mechanism.

Simulation Results

Below is a simulation of the empirical measure process µt, t ≥ 0, for ξ = id
starting from µ0 = δ0. Grayscale colour coding is for atom sizes. The red line is
the center of mass of the system which is always a standard Brownian motion
regardless the choice of ξ.

We also show the trajectory of the total number of atoms. The red curve shows
a mollified (moving average) version of the same plot for better visibility.
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Finally we plot the cooresponding history of induced partitions of the unit
interval [0, 1], where a dot represents the common boundary of two adjacent
compartments belonging to two neighbouring atoms of µ.

1.3 Rigorous statement of main results

We will present now our main result in a rigorous fashion in terms of the
measure valued process µ· assuming values in the set P2(R) of Borel probability
measures on the real line with finite second moment, i.e.

P2(R) := {ρ ∈ P(R) : m2(ρ) :=

∫
R
x2ρ(dx) <∞}.

We equip P2(R) with the topology w2 of weak convergence under uniform
bounded second moment condition, i.e.

ρn −→w2
ρ :⇔

{
ρn → ρ weakly and
m2(ρn)→ m2(ρ).

The free parameter of the model is given in terms of some η ∈ P2(R), or
equivalently by the choice of ξ = gη, where for ρ ∈ P2(R) we denote by gρ its
right continuous quantile function, i.e

[0, 1] 3 u 7→ gρ(u) := inf{x ∈ R : ρ((−∞, x]) > u}.

Given η ∈ P2(R) we introduce the set of all monotone transformations of
η, i.e.

Pη2 (R) := {ρ ∈ P2(R) : ρ = h#(η) for some non decreasing h : R 7→ R},



6 Vitalii Konarovskyi, Max-K. von Renesse

which is a w2-closed subset of P2(R). Finally, we write

Pa2 (R) =

{
ρ =

n∑
k=1

akδzk :

n∑
k=1

ak = 1, ak > 0, zk ∈ R, k = 1, . . . , n, n ∈ N

}

for the subset of purely countably atomic probability measures on R, and for
ρ ∈ Pa2 (R) we set

|ρ| =
∑

z∈supp ρ
δz ∈ P2(R).

Below we will work with the algebra of (’smooth’) functions F on P2(R)
which is generated by functions of the form

F (ρ) = φ(〈h, gρ〉) · ψ(〈f, ρ〉)
= φ(〈h, gρ〉) · ψ(〈f ◦ gρ〉),

where φ, ψ and h belong to C∞0 (R), f ∈ C∞([0, 1]) and 〈·, ·〉 denotes the
standard L2(dx) resp. duality product for measures vs. functions on R or [0, 1]
and 〈·〉 is integration against the uniform (Lebesgue) measure on [0, 1]. Writing
F (ρ) = Φ(gρ) for F ∈ F we define the gradient of F ∈ F by

DF|ρ := prgρ ∇
L2Φ|gρ ,

where ∇L2Φ denotes the standard L2(dx)-gradient of Φ which is defined by

〈∇L2Φ|g, h〉 = ∂ε|ε=0Φ(g + εh), ∀h ∈ L2[0, 1],

and prgρ denotes the orthogonal projection in L2[0, 1] onto the subspace of
functions which are measurable with respect to the σ-field σ(gρ) on [0, 1] gener-
ated by the function gρ. We will also use the projection pr⊥g to the complement,

i.e. pr⊥g h = h− prg h.

With these preparations we can summarize the main result of this paper
as follows.

Theorem 1 For η ∈ P2(R) there exists a measure Ξη on P2(R) with suppΞη =
Pη2 (R) such that the quadratic form

E(F, F ) =

∫
Pη2 (R)

‖D|ρF (·)‖2L2[0,1]
Ξη(dρ), F ∈ F ,

is closable on L2(Pη2 , Ξη), its closure being a local quasi-regular Dirichlet form
on L2(Pη2 , Ξη).
Let µt, t ∈ [0, ζ), the properly associated Pη2 (R)-symmetric diffusion process
with life time ζ > 0. Then

i) for almost all t ∈ [0, ζ) it holds that µt ∈ Pa2 almost surely;
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ii) for all f ∈ C∞0 (R) the process

Mf := 〈µt, f〉 −
1

2

∫ t

0

〈|µs|, f ′′〉ds

is a local martingale with finite quadratic variation process

[Mf ]t =

∫ t

0

〈µs, (f ′)2〉ds;

iii) for all h ∈ C∞([0, 1]) the process

M̃h := 〈gµt , h〉 −
1

2

∫ t

0

〈pr⊥gµs h, gη〉ds

is a local martingale with finite quadratic variation process

[M̃h]t =

∫ t

0

‖prgµsh‖
2
L2[0,1]

ds;

iv) for all measurable A,B ⊂ Pη2 with 0 < Ξη(A)Ξη(B) < ∞ and A or B
open it holds that

lim
t→0

t · lnP(µ0 ∈ A,µt ∈ B) = −d
2
W(A,B)

2
,

where dW(A,B) = ess inf(ρ,λ)∈A×B dW(ρ, λ).

Remark 1 1) Property ii) in the theorem above is equivalent to saying that µ·
is a martingale solution to the SPDE

dµt = Γ0(µt)dt+ div (
√
µtdWt)

if one works with the canonical set of test functions of the type ρ 7→ Φ(ρ) :=
ϕ(〈f, ρ〉) with ϕ, f ∈ C∞0 (R). This collection of test functions is commonly
used in the theory of measure valued diffusion processes. Since ii) holds true
regardless the choice of η ∈ P2(R), it is clearly not sufficient to characterize
the process µ·. This shows in particular that the martingale problem encoded
by ii) alone is not well posed. For instance, the solution given by the modified
Arratia flow in [35] is obtained by choosing η = δz for some z ∈ R, which,
however, is not reversible.

2) In fact, property ii) will be a rather straightforward consequence of
the stronger assertion iii), which is equivalent to the statement that process
Xt := gµt , t ∈ [0, ζ), is a weak solution to the SDE in infinite dimensions

dXt =
1

2
pr⊥Xt ξ dt+ prXt dWt,

where ξ = gη and dW is L2[0, 1]-white noise. This representation is the justi-
fication for the heuristic description of the model in the previous section. As
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discussed in [35] the modified massive Arratia flow solves the same SDE with
ξ = const., i.e. η = δz for some z ∈ R.

3) Property iii) together with the fact that suppΞη = Pη2 imply in partic-
ular that the process µ· explores the entire Pη2 -space. Note that Pη2 = P2 iff η
has no atoms.

4) In Section 6 below we give a first condition assuring infinite lifetime
ζ = ∞. This will be the case if e.g. η([a, b]) = 1 for some a ≤ b and η({a}) ·
η({b}) > 0.

Remark 2 Our construction given in the subsequent sections is strongly related
to diffusion processes on domains with so called sticky-reflecting boundary
conditions. In fact, as in [46] we will cast the measure valued process µ· in terms
of the associated process of quantile functions X· = gµ· , assuming values in
the set D↑ of non decreasing functions on [0, 1]. We view D↑ as a closed convex
cone embedded in the topological space L2[0, 1]. As our main and critical step
we construct the measure Ξ = Ξξ on D↑ which allows for an integration by
parts formula to obtain a closable pre-Dirichlet form

E(F, F ) =

∫
D↑
‖DF|g‖2L2

Ξ(dg).

As a subset of L2[0, 1] the space D↑ has no interior since ∂D↑ is dense in
D↑, hence we need a non-standard construction of a candidate measure Ξ. Our
approach is to define Ξ on the subset S↑ of piecewise constant non decreasing
functions. The set S↑ =

⋃∞
n=0 S↑n has a natural structure as a generalized

non locally finite simplicial complex, where each S↑n is the collection of all
piecewise constant n-step functions. In this picture each connected component
of the relative affine interior of S↑n can be viewed as an n-dimensional face of
S↑ which is the common boundary of uncountably many (n+ 1)-dimensional
faces that are parametrized by points in appropriate simplex. The measure
Ξξ is then obtained by putting an n-dimensonal measure Ξξn on each S↑n for
all n in a way which is consistent with the hierarchical structure of S↑. As a
result we obtain a measure on a simplicial complex with positive mass on all
faces of arbitrary dimension. In this picture the gradient operator appearing
in the Dirichlet form above is obtained as projection of the full gradient to the
effective tangent space on the respective faces and is therefore geometrically
natural. The outcome is a Dirichlet form which generalizes the case considered
e.g. in [26] to the (infinite dimensional) case of sticky-reflecting behaviour in
piecewise smooth domains along embedded boundaries but now of arbitrary
codimension.

The structure of this work is as follows. After some preliminaries we start
off in Chapter 3 by introducing the model in a special case when the sys-
tem consists of a fixed finite number of atoms with prescribed masses. The
atoms can coalesce and fragmentate, but fragmentation is allowed only in ac-
cordance with the initially assigned mass portions. This chapter exhibits the
basic mechanism of the system in a finite dimensional situation.
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Section 4 contains the construction of the measure Ξξ in the general case.
We identify its support and show certain moment bounds which are critical
for the quasi-regularity of the Dirichlet form which we introduce in Section 5.
The core result of Section 5 is the integration by parts formula which is needed
for closability. In Section 6 we establish quasi-regularity. We also show con-
servativeness in a special case. Section 7 is devoted to the identification of the
intrinsic metric which leads to the desired Varadhan formula by applying a
general theorem by Ariyoshi and Hino [5]. In Section 8 we wrap up the results
in terms of the induced measure valued process and the related martingale
problem.

2 Preliminaries

For p ∈ [1,∞] we denote the space of all p-integrable (essentially bounded if
p = ∞) functions (more precisely equivalence classes) from [0, 1] to R with
respect to the Lebesgue measure Leb on [0, 1] by Lp and ‖ · ‖p is the usual
norm on Lp. The inner product in L2 is denoted by 〈·, ·〉. Let D↑ be the set
of càdlàg non decreasing functions from [0, 1] into R = R ∪ {−∞,+∞}. For
convenience, we assume that all functions from D↑ are continuous at 1. Let
L↑p be the subset of Lp that contains functions (their equivalence classes) from

D↑.
Note that L↑2 is a closed subset of L2, by Corollary A.2. [31]. Consequently,

L↑2 is a Polish space with respect to the distance induced by ‖ · ‖2.
If f = g a.e., then we say that f is a modification or version of g or g is a

modification or version of f .

Remark 3 Since each function f from L↑2 has a unique modification from D↑

(see, e.g., Remark A.6. [31]), considering f as a map from [0, 1] to R, we always
take its modification from D↑.

We set for each n ∈ N

En = {x = (x1, . . . , xn) ∈ Rn : xi ≤ xi+1, i ∈ [n− 1]}

and
En0 = {x = (x1, . . . , xn) ∈ Rn : xi < xi+1, i ∈ [n− 1]},

where [n] = {1, . . . , n}. Also let

Qn = {q = (q1, . . . , qn−1) : 0 < q1 < . . . < qn−1 < 1}

for all n ≥ 2. For convenience, considering q from Qn, we always set q0 = 0
and qn = 1.

Next, for g ∈ L↑2 we denote the number of distinct values of the function g
(that belongs to D↑ according to the previous remark) by ]g. If ]g <∞, then
g is called a step function (g takes a finite number of values). The set of all
step functions we denote by S↑.
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Remark 4 If ]g = n, then there exist unique q ∈ Qn and x ∈ En0 such that

g =

n∑
i=1

xiI[qi−1,qi) + xnI{1},

where IA is the indicator function of a set A.

If E is a topological space, then the Borel σ-algebra on E is denoted by
B(E).

For any family of sets H we denote the smallest σ-algebra that contains H
by σ(H). Similarly, σ(f) = σ({f−1(A) : A ∈ B(R)}) = {f−1(A) : A ∈ B(R)}
for a function f taking values in R. For g ∈ L↑2 let σ?(g) denote the completion
of the σ-algebra σ(g) with respect to the Lebesgue measure on [0, 1] and prg
be the orthogonal projection operator in L2 on the closed linear subspace

L2(g) := {f ∈ L2 : f is σ?(g)-measurable}.

By Lemma 1.25 [28], σ?(g) and L2(g) are well-defined for each equivalence

class g from L↑2. Also we set L↑2(g) = L2(g) ∩ L↑2.

Remark 5 (i) For each h ∈ L2 the function prg h coincides with the conditional
expectation E(h|σ?(g)) on the probability space ([0, 1],L([0, 1]),Leb), where
L([0, 1]) denotes the σ-algebra of Lebesgue measurable subsets of [0, 1].

(ii) For each h ∈ L2, E(h|σ?(g)) = E(h|σ(g)) a.e.

(iii) The projection prg maps the space L↑2 into L↑2.

3 Finite system of sticky reflected diffusion particles

The aim of this section is to construct a finite system of diffusion particles
on the real line with sticky-reflecting interaction. Also this section gives a
motivation for the definition of the system in the general case. We will use a
Dirichlet form approach for the construction of the system. In particular, we
use ideas from paper [26] for the description of the sticky-reflecting mechanism.
Here we fix n ∈ N and numbers mi ∈ (0, 1], i ∈ [n], with m1 + . . . + mn = 1,
which play a role of a number of particles and particle masses respectively.

3.1 Some notation

Let Θn denote the set of all ordered partitions of [n]. We take θ = (θ1, . . . , θp) ∈
Θn and denote the number of sets in the partition θ by |θ|, i.e. |θ| = p. Let

Eθ = {x ∈ En : xi = xj ⇔ i, j ∈ θk for some k ∈ [|θ|]}.

Remark that the sets Eθ, Eθ′ are disjoint for θ 6= θ′ and En =
⋃
θ∈Θn Eθ.

Let Rθ be the bijection between Eθ and E|θ| defined as follows

Rθ (x1, . . . , xn) = (y1, . . . , y|θ|),
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where yk = xi for some i ∈ θk (and, consequently, for all i ∈ θk, since x ∈ Eθ)
and k ∈ [|θ|]. The push forward of the Lebesgue measure λ|θ| on E|θ| under

the map R−1θ is denoted by λθ. We note that λθ and λθ′ are singular if θ 6= θ′.
Let Aθ be the n× n-matrix defined by

Aθ = diag{Aθ1 , . . . , Aθp},

where

Aθk =
1

mθk

√mik . . .
√
mjk

. . . . . . . . .√
mik . . .

√
mjk


for θk = {ik, . . . , jk}, ik < . . . < jk, and mθk =

∑
i∈θk mi, k ∈ [|θ|].

We say that f : En → R belongs to C2
0 (En) if it has a compact support

and can be extended to a twice continuously differentiable function f̃ on an
open set that contains En. Set ∂

∂xi
f(x) := ∂

∂xi
f̃(x), x ∈ En, i ∈ [n]. Let

∇θf(x) :=

(
1

√
mθk

∂

∂yk
f(R−1θ (y))

∣∣
y=Rθ(x)

)
k∈[|θ|]

, x ∈ Eθ,

and

4θf(x) := Tr
(
AθA

T
θ∇2f

)
=

|θ|∑
k=1

1

mθk

∂2

∂y2k
f(R−1θ (y))

∣∣
y=Rθ(x)

, x ∈ Eθ,

for f ∈ C2
0 (En), where AT denotes the transpose matrix.

3.2 Definition via Dirichlet forms

We define the measure Λn on En, that will play a role of an invariant measure
for a system of particles, as follows

Λn =
∑
θ∈Θn

cθλθ,

where cθ, θ ∈ Θn, are positive constants that will be chosen later, and consider
the following symmetric bilinear form on L2(En, Λn) defined on all functions
f, g from C2

0 (En)

En(f, g) =
1

2

∑
θ∈Θn

∫
En
〈∇θf(x),∇θg(x)〉R|θ|Λn(dx)

=
1

2

∑
θ∈Θn

cθ

∫
E|θ|

 |θ|∑
k=1

∂

∂yk
f(R−1θ (y))

∂

∂yk
g(R−1θ (y))

1

mθk

λ|θ|(dy),

where 〈x, y〉Rp =
∑p
k=1 xkyk.
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For each θ ∈ Θn we denote

∂θ =
{
θ′ ∈ Θn : θ′ = (θ1, . . . , θk−1, θk ∪ θk+1, θk+2, . . . , θ|θ|)

for some k ∈ [|θ| − 1]
}

and define for θ′ = (θ′j) ∈ ∂θ the vector bθ,θ
′ ∈ Rn as follows

bθ,θ
′

i =


− 1
mθk

, i ∈ θk,
1

mθk+1

, i ∈ θk+1,

0, otherwise,

i ∈ [n],

where k satisfies θk ∪ θk+1 = θ′k.
Using integration by parts formula, it is easily to prove the following state-

ment.

Lemma 1 For each f, g ∈ C2
0 (En) the relation

En(f, g) = −
∫
En

Lnf(x)g(x)Λn(dx)

holds, where

Lnf(x) =
1

2

∑
θ∈Θn

4θf(x)IEθ (x) +
1

2

∑
θ∈Θn

〈bθ,∇f(x)〉IEθ (x)

and

bθ =
1

cθ

∑
θ̃:θ∈∂θ̃

cθ̃b
θ̃,θ.

It is obvious that (Ln, C
2
0 (En)) is a non negative self-adjoint linear operator

on L2(En, Λn). Consequently, the bilinear form (En, C2
0 (En)) is closable, by

Proposition I.3.3 [39]. We will denote its closure by (En,Dn).

Theorem 2 (i) The bilinear form (En,Dn) is a densely defined, local, regular,
conservative, symmetric Dirichlet form on L2(En, Λn).

(ii) There exists a (Markov) diffusion1 process

Xn = (Ωn,Fn, {Fnt }t≥0, {Xn
t }t≥0, {Pnx}x∈En)

with state space En and infinite life time that is properly associated with
(En,Dn).

(iii) The process Xn is a weak solution in En of the stochastic differential
equation

dXn
t =

∑
θ∈Θn

AθIEθ (Xn
t )dw(t) +

1

2

∑
θ∈Θn

bθIEθ (Xn
t )dt,

Xn
0 = x

(1)

1 see Definition V.1.10 [39]
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for En-q.e. x ∈ En, where w(t), t ≥ 0, is an n-dimensional standard Wiener
process.

Proof The proof of theorem follows from standard arguments (see e.g. Sec-
tion 3 [26]). ut

Choosing constants cθ, θ ∈ Θn, by a special way, we can simplify equa-
tion (1). Let Pθ be the matrix defined similarly as Aθ with

√
mi replaced by

mi for all i ∈ [n].

Remark 6 If the space Rn is furnished with the inner product 〈x, y〉 =
∑n
i=1 xiyimi,

x, y ∈ Rn, then the linear operator

x→ Pθx, x ∈ Rn,

is the orthogonal projection on Rθ, where Rθ ⊆ Rn is defined similarly as Eθ
with En replaced by Rn.

We also set Px := Pθ for each x ∈ Eθ.

Proposition 1 Let ς ∈ En0 . If

cθ =

 |θ|∏
k=1

mθk

|θ|−1∏
k=1

(ςiθk+1 − ςiθk)

 , θ ∈ Θn, (2)

where iθk = max θk, then bθ = ς − Pθς. Moreover, the process X is a weak
solution in En of the stochastic differential equation

dXn
t = PXnt dB(t) +

1

2
(ς − PXnt ς)dt,

Xn
0 = x

(3)

for En-q.e. x ∈ En, where B(t), t ≥ 0, is an n-dimensional Wiener process
with

Var (Bi(t), Bj(t)) =
t

mi
I{i=j}, i, j ∈ [n].

Proof First we show that bθ = ς−Pθς. So, let θ ∈ Θn be fixed. We will suppose
that θ 6= ({i})i∈[n], since the case θ = ({i})i∈[n] is trivial. We also fix j ∈ [n]
and take k such that j ∈ θk.

Let
j := min θk, j := max θk

and for each l ∈ {j, . . . , j − 1} we denote the sets {j, . . . , l} and {l + 1, . . . , j}
by {≤ l} and {> l}, respectively. Noting that bθ̃,θj = 0 for all θ̃ ∈ Θn satisfying

θ ∈ ∂θ̃ and θ̃k ∪ θ̃k+1 6= θk, it is easily seen that

bθj =

{
1
cθ

∑j−1
l=j cθlb

θl,θ
j , j < j,

0, j = j,
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where θ ∈ ∂θl with θlk = {≤ l} and θlk+1 = {> l}. We assume that j < j,

otherwise bθj = ςj − (Pθς)j = 0. The simple computation gives

cθl

cθ
=
m{≤l}m{>l}

mθk

(ςl+1 − ςl)

and

bθ
l,θ
j =

{
− 1
m{≤l}

, l ≥ j,
1

m{>l}
, l < j,

for all l ∈ {j, . . . , j − 1}. Hence,

bθj =
1

mθk

j−1∑
l=j

m{≤l}(ςl+1 − ςl)−
j−1∑
l=j

m{>l}(ςl+1 − ςl)


=

1

mθk

m{≤j−1}ςj − j−1∑
l=j

mlςl +m{>j−1}ςj −
j∑
l=j

mlςl


= ςj −

1

mθk

j∑
l=j

mlςl = ςj − (Pθς)j .

Thus, bθ = ς − Pθς.
The equality of the diffusion parts of (1) and (3) is trivial for Bi(t) = wi(t)√

mi
,

i ∈ [n]. The proposition is proved. ut

The following example shows that one cannot expect that equation (3) has
a strong solution.

Example 1 Let n = 2, m1 = m2 = 1
2 and ς = (0, 1). Then Xt = (x1(t), x2(t)),

t ≥ 0, solves the equation

dx1(t) =
√

2I{x1(t) 6=x2(t)}dw1(t)

+ I{x1(t)=x2(t)}
dw1(t) + dw2(t)√

2
− 1

4
I{x1(t)=x2(t)}dt,

dx2(t) =
√

2I{x1(t) 6=x2(t)}dw2(t)

+ I{x1(t)=x2(t)}
dw1(t) + dw2(t)√

2
+

1

4
I{x1(t)=x2(t)}dt,

where (w1, w2) is a 2-dimensional standard Wiener process. Taking

y1(t) =
x2(t)− x1(t)

2
and y2(t) =

x2(t) + x1(t)

2
, t ≥ 0,

it is easily seen that y1 and y2 are weak solutions of the equations

dy1(t) = I{y1(t)>0}dw̃1(t) +
1

4
I{y1(t)=0}dt,

dy2(t) = dw̃2(t).

But the equation for y1 has no strong solution, according to [20].
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4 σ-finite measure on L↑
2

Now we want to transfer the results obtained in the previous section on the
space of all non increasing functions and construct a process on the space L↑2
that is similar to the process defined in Proposition 1, since in this case we
have a good description for the drift term. First of all, we need a measure on
L↑2 that will play a role of invariant measure for the system of sticky reflected
particles for any non decreasing function ξ (instead of the vector ς). Moreover,
this measure should coincide with the measure Λn (where cθ, θ ∈ Θn, are
defined by (2)) for a finite number of particles. The construction of such a
measure is the aim of this section.

Hereinafter ξ ∈ D↑ is a fixed bounded function.

4.1 Motivation of the definition

Here we will make some manipulations with the measure Λn in order to guess
the needed measure. Let n ∈ N, mi = i

n , i ∈ [n], and the constants cθ from
the definition of Λn be defined by (2) for some ς that will be chosen later. We
transfer the measure

Λn =
∑
θ∈Θn

 |θ|∏
k=1

mθk

|θ|−1∏
k=1

(ςiθk+1 − ςiθk)

λθ

on L↑2 by the map

x 7→ G(x) =

n∑
i=1

xiI[ i−1
n , in ), x ∈ En.

So, let Λ̃n be the push forward of the measure Λn on En under the map G.
Then Λ̃n can be written as follows

Λ̃n =
∑
θ∈Θn

 |θ|∏
k=1

mθk

|θ|−1∏
k=1

(ςiθk+1 − ςiθk)

 λ̃(mθ1 , . . . ,mθ|θ|),

where λ̃(mθ1 , . . . ,mθ|θ|) is the push forward of the Lebesgue measure λ|θ| on

E|θ| under the map x 7→
∑|θ|
k=1 xkI[ak+1,ak), with a0 = 0, ak = mθk + ak−1,

k ∈ [|θ|].
Setting Θnp = {θ ∈ Θn : |θ| = p} and ςi+1 − ςi ≈ 1

nξ
′ ( i
n

)
(if ξ is continu-

ously differentiable), it is easy to see that

Λ̃n =

n∑
p=1

∑
θ∈Θnp

[
p∏
k=1

|θk|
n

][
p−1∏
k=1

ξ′
(
iθk
n

)
1

n

]
λ̃

(
|θ1|
n
, . . . ,

|θp|
n

)

=

n∑
p=1

∑
l1, . . . , lp ≥ 1
l1 + . . . + lp = n

[
p∏
k=1

lk
n

]
1

np−1

[
p−1∏
k=1

ξ′
(
l1 + . . .+ lk

n

)]
λ̃

(
l1
n
, . . . ,

lp
n

)
.



16 Vitalii Konarovskyi, Max-K. von Renesse

Thus, we see that the relation consist of Riemann sums. So, we replace the
measure Λ̃n by

n∑
p=1

∫
r1, . . . , rp−1 > 0

r1 + . . . + rp−1 < 1

(
p−1∏
k=1

rk

)
(1− r1 − . . .− rp−1)

·

(
p−1∏
k=1

ξ′ (r1 + . . .+ rk)

)
λ̃ (r1, . . . , rp−1, 1− r1 − . . .− rp−1) dr

=

n∑
p=1

∫
0<q1<...<qp−1<1

(
p∏
k=1

(qk − qk−1)

)(
p−1∏
k=1

ξ′(qk)

)
λ̃ (q1, q2 − q1 . . . , 1− qp−1) dq

=

n∑
p=1

∫
0<q1<...<qp−1<1

(
p∏
k=1

(qk − qk−1)

)
λ̃ (q1, q2 − q1 . . . , 1− qp−1) dξ⊗(p−1)(q),

where q0 = 0 and qp = 1 in the product.
In the next section we will use the obtained expression for the definition

of the needed measure.

4.2 Definition of an invariant measure on L↑2

First we define a measure Ξn on L2 for each n ∈ N, supported on step functions
with at most n− 1 jumps. Let χn : Qn × En → L↑2 with

χn(q, x) =

n∑
i=1

xiI[qi−1,qi) + xnI{1}, x ∈ En, q ∈ Qn, (4)

and

χ1(x) = xI[0,1], x ∈ R.

Denote for all q ∈ Qn, n ≥ 2, the push forward of the Lebesgue measure λn
on En under the map χn(q, ·) by νn(q, ·), i.e.

νn(q, A) = λn{x : χn(q, x) ∈ A}, A ∈ B(L↑2),

and set

Ξn(A) =

∫
Qn

(
n∏
i=1

(qi − qi−1)

)
νn(q, A)dξ⊗(n−1)(q), A ∈ B(L↑2),

where
∫
Qn

. . . dξ⊗(n−1)(q) is the (n − 1)-dim Lebesgue-Stieltjes integral with

respect to ξ⊗(n−1)(q) = ξ(q1) · . . . · ξ(qn−1). We also set

Ξ1(A) = λ1 {x ∈ R : χ1(x) ∈ A} , A ∈ B(L↑2). (5)
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Now we define the measure on L↑2, that will be used for the definition of
the Dirichlet form in the general case, as a sum of Ξn, that is,

Ξ :=

∞∑
n=1

Ξn = Ξ1 +

∞∑
n=2

∫
Qn

(
n∏
i=1

(qi − qi−1)

)
νn(q, ·)dξ⊗(n−1)(q).

Remark 7 If ξ = χn(q, ς) for some q ∈ Qn and ς ∈ En0 , then a simple calcula-
tion shows that Ξ coincides with the push forward of the measure Λn on En,
defined in Section 3.2, under the map x 7→ χn(q, x), x ∈ En, for mi = qi−qi−1,
i ∈ [n], and cθ, θ ∈ Θn, given by (2).

4.3 Some properties of the measure Ξ

In this section, we prove some properties of the measures Ξ and Ξn, n ≥ 1.
Define on Qn the measure µnξ as follows

µnξ (A) =

∫
A

n∏
i=1

(qi − qi−1)dξ⊗(n−1)(q), A ∈ B(Qn), n ≥ 2.

Lemma 2 For each n ∈ N,

(i) Ξn is the push forward of the measure µnξ ⊗λn under the map χn, if n ≥ 2;

(ii) Ξn is σ-finite on L↑2 and

Ξn(Br) ≤
2π

n
2 rn

n!Γ
(
n
2

) (ξ(1)− ξ(0))n−1,

where Br = {g ∈ L↑2 : ‖g‖2 ≤ r};
(iii) Ξn({g ∈ L↑2 : ]g 6= n}) = 0, where ]g denotes the number of distinct values

of g (see Section 2).

Remark 8 We note that {g ∈ L↑2 : ]g 6= n} ∈ B(L↑2), since {g ∈ L↑2 : ]g ≤ n}
is closed in L↑2.

Remark 9 Property (ii) of Lemma 2 immediately implies that Ξ is a σ-finite

measure on L↑2 with Ξ(Br) <∞.

Proof (Proof of Lemma 2) (i) follows from the definition of the measure Ξn
and Fubini’s theorem.

The equality νn(q, {g ∈ L↑2 : ]g 6= n}) = 0, for all q ∈ Qn, implies (iii).
Let us note that (ii) is obvious for n = 1. We prove (ii) for n ≥ 2. Let

q ∈ Qn be fixed. We first estimate

νn(q,Br) = λn
{
x ∈ En : ‖χn(q, x)‖22 ≤ r2

}
= λn

{
x ∈ En :

n∑
i=1

x2i (qi − qi−1) ≤ r2
}

≤ 2π
n
2 rn

nΓ
(
n
2

) 1√∏n
i=1(qi − qi−1)

.

(6)
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Here λn
{
x ∈ En :

∑n
i=1 x

2
i (qi − qi−1) ≤ r2

}
is estimated by the n-dimensional

volume of the ellipsoid
∑n
i=1 x

2
i (qi − qi−1) ≤ r2. Thus,

Ξn(Br) ≤
2π

n
2 rn

nΓ
(
n
2

) ∫
Qn

√√√√ n∏
i=1

(qi − qi−1)dξ⊗(n−1)(q)

≤ 2π
n
2 rn

nΓ
(
n
2

) ∫
Qn

1dξ⊗(n−1)(q) =
2π

n
2 rn

n!Γ
(
n
2

) (ξ(1)− ξ(0))n−1,

where n! is obtaining by symmetry. The lemma is proved. ut

The following lemma is important for the proof of the quasi-regularity of
the Dirichlet form in Section 6.1.

Lemma 3 Let C > 0, q ∈ [1, 2], p, r ∈ [2,∞) and l ∈ [1,∞) such that
l
r + 2

q −
l
p ≤

3
2 and r ≤ p. Then there exists a constant C̃ which only depends

on C and l such that

sup
h∈H

∫
L↑2

‖g‖lp‖prg h‖22 I{‖g‖r≤C}Ξ(dg) ≤ C̃,

where H = {h ∈ L2 : ‖h‖q ≤ 1}.

Proof First we estimate
∫
BC
‖g‖lp‖ prg h‖22Ξn(dg) for each n ≥ 2 and ‖h‖q ≤ 1,

where BC = {g ∈ L↑2 : ‖g‖r ≤ C}.
So, by the definition of Ξn, we have∫

BC

‖g‖lp‖ prg h‖22Ξn(dg) =

∫
Qn

n∏
i=1

(qi − qi−1)

·

∫
En

(
n∑
i=1

|xi|p(qi − qi−1)

) l
p ∥∥∥prχn(q,x) h

∥∥∥2
2
IBC (χn(q, x))λn(dx)

 dξ⊗(n−1)(q).
Next, let (q, x) ∈ Qn × En and χn(q, x) ∈ BC . Then

‖χn(q, x)‖rr =

n∑
i=1

|xi|r(qi − qi−1) ≤ Cr.

Thus, |xi| ≤ C

(qi−qi−1)
1
r

, i ∈ [n], and, consequently,

‖χn(q, x)‖pp =

n∑
i=1

|xi|p(qi − qi−1) ≤ Cp
n∑
i=1

(qi − qi−1)1−
p
r . (7)

Similarly, if ‖prχn(q,x) h‖q ≤ 1, then

‖ prχn(q,x) h‖
2
2 ≤

n∑
i=1

(qi − qi−1)1−
2
q . (8)



Reversible Coalescing-Fragmentating Wasserstein Dynamics on the Real Line 19

We note that by Remark 5 (i) and Jensen’s inequality, we have that ‖h‖q ≤ 1
implies ‖prg h‖q ≤ 1. Indeed,

‖prg h‖qq = E |E(h|σ?(g))|q ≤ EE(|h|q|σ?(g)) = E|h|q = ‖h‖qq ≤ 1.

So, (8) holds for any h ∈ H. Hence, using qi − qi−1 ≤ 1, i ∈ [n], (8) and (7),
we can estimate for each h ∈ H

n∏
i=1

(qi − qi−1)

(
n∑
i=1

|xi|p(qi − qi−1)

) l
p ∥∥∥prχn(q,x) h

∥∥∥2
2
IBC (χn(q, x))

≤ Cl
n∏
i=1

(qi − qi−1)

(
n∑
i=1

(qi − qi−1)1−
p
r

) l
p
(

n∑
i=1

(qi − qi−1)1−
2
q

)

≤ Cln
l
p

n∏
i=1

(qi − qi−1)
1
2

(
n∑
i=1

(qi − qi−1)
3
2−

l
r−

2
q+

l
p

)

≤ Cln
l
p+1

n∏
i=1

(qi − qi−1)
1
2 IBC (χn(q, x)),

if l
r + 2

q −
l
p ≤

3
2 and r ≤ p. Hence, by (6) and the inclusion BC ⊆ {g ∈ L↑2 :

‖g‖2 ≤ C}, r ≥ 2, we have∫
BC

‖g‖lp‖ prg h‖22Ξn(dg)

≤ Cln
l
p+1

∫
Qn

n∏
i=1

(qi − qi−1)
1
2

[∫
En

IBC (χn(q, x))λn(dx)

]
dξ⊗(n−1)(q)

= Cln
l
p+1

∫
Qn

n∏
i=1

(qi − qi−1)
1
2 νn(q,BC)dξ⊗(n−1)(q)

≤ 2π
n
2 C(n+l)n

l
p+1

n!Γ
(
n
2

) (ξ(1)− ξ(0))n−1.

We note that
∑∞
n=2

2π
n
2 C(n+l)n

l
p
+1

n!Γ(n2 )
(ξ(1)− ξ(0))n−1 <∞ and

sup
h∈H

∫
BC

‖g‖lp‖ prg h‖22Ξ1(dg) ≤
∫ C

−C
|x|ldx,

since ‖g‖p = ‖g‖2 and ‖ prg h‖2 = ‖ prg h‖q ≤ ‖h‖q ≤ 1 Ξ1-a.e. Hence, the

integral
∫
BC
‖g‖lp‖ prg h‖22Ξ(dg) is uniformly bounded on H by a constant

that only depends on l and C. The lemma is proved. ut

Lemma 4 Ξ
{
g ∈ L↑2 : ‖g‖pp 6→ ‖g‖22 as p ↓ 2

}
= 0.
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Proof The proof immediately follows from the definition of the measure Ξ and
the fact that for all n ≥ 2 and q ∈ Qn,

νn
(
q,
{
χn(q, x) : x ∈ En and ‖χn(q, x)‖pp 6→ ‖χn(q, x)‖22, p ↓ 2

})
= λn

{
x ∈ En :

n∑
i=1

xpi (qi − qi−1) 6→
n∑
i=1

x2i (qi − qi−1), p ↓ 2

}
= 0.

ut

4.4 Support of the measure Ξ

Recall that L↑2(ξ) denotes the subset of all σ?(ξ)-measurable functions from

L↑2. Let µξ denote the Lebesgue-Stieltjes measure on [0, 1] generated by the
function ξ, that is, µξ((a, b]) = ξ(b)− ξ(a) for all a < b from [0, 1].

Proposition 2 The support of Ξ coincides with L↑2(ξ).

Remark 10 If ξ is a strictly increasing function, then L↑2(ξ) = L↑2 and, conse-

quently, suppΞ = L↑2.

To prove Proposition 2, we need several auxiliary lemmas.

Lemma 5 If h ∈ S↑ ∩ L↑2(ξ) and s is a jump point of h, then s ∈ suppµξ.

Proof Suppose that s /∈ suppµξ. Then there exists ε > 0 such that µξ((s −
ε, s + ε]) = 0. So, ξ(s − ε) = ξ(s + ε). By Proposition 14, we have that
h(s− ε) = h((s+ ε)−). But this contradicts the assumption that s is a jump
point of the non decreasing function h. ut

Lemma 6 Let g, h ∈ L↑2 and h is a step function. Then prg h is also a step
function.

Proof The proof if given in the appendix. ut

Proof (Proof of Proposition 2) Step I. First we show that L↑2(ξ) ⊆ suppΞ.

Let g ∈ L↑2(ξ) and ε > 0. We need to show that Ξ(Bε(g)) > 0, where

Bε(g) = {h ∈ L↑2 : ‖g − h‖2 < ε}. Since the set of all step functions S↑ is

dense in L↑2, there exists h̃ ∈ S↑ such that ‖g − h̃‖2 < ε. Hence,

‖g − prξ h̃‖2 = ‖ prξ(g − h̃)‖2 ≤ ‖g − h̃‖2 < ε. (9)

Setting h = prξ h̃ and using Lemma 6, we have that h is a step function that

belongs to Bε(g) ∩ L↑2(ξ). By Remark 4, there exist n ∈ N, r ∈ Qn (if n ≥ 2)
and y ∈ En0 such that

h =

n∑
i=1

yiI[ri−1,ri) + ynI{1}.
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If n = 1, then it is easy to see that Ξ1(Bε(g)) > 0. This implies Ξ(Bε(g)) >
0. So, we give the proof for n ≥ 2.

Using the continuity of the map F : Qn × En0 → R given by

F (q, x) = ‖g − χn(q, x)‖22 =

n∑
i=1

∫ qi

qi−1

(g(s)− xi)2ds, (q, x) ∈ Qn × En0 ,

where χn is defined by (4), and the inequality F (r, y) < ε2 following from (9),
we can conclude that there exist neighbourhoods of r and y given by

R = {q ∈ Qn : |qi−ri| < δ, i ∈ [n−1]}, Y = {x ∈ Rn : |xi−yi| < δ, i ∈ [n]}

such that Y ⊂ En,
∏n
i=1(qi−qi−1) ≥ δ and F (q, x) < ε2 for all (q, x) ∈ R×Y .

Thus, trivially, χn(q, x) ∈ Bε(g) for all (q, x) ∈ R × Y . So, we can estimate
Ξn(Bε(g)) from below as follows

Ξn(Bε(g)) =

∫
Qn

n∏
i=1

(qi − qi−1)

(∫
En

I{x: χn(q,x)∈Bε(g)}λn(dx)

)
dξ⊗(n−1)(q)

≥ δ
∫
R

(∫
Y

1λn(dx)

)
dξ⊗(n−1)(q) = δn+1

n−1∏
i=1

µξ((ri − δ, ri + δ)).

Since h belongs to S↑ ∩ L↑2(ξ) and ri, i ∈ [n− 1], are its jump points,

n−1∏
i=1

µξ((ri − δ, ri + δ)) > 0,

by Lemma 5. Hence Ξ(Bε(g)) > 0 and consequently, L↑2(ξ) ⊆ suppΞ.

Step II. Here we establish that for all g ∈ L↑2 \ L
↑
2(ξ) there exists ε > 0

such that Ξ(Bε(g)) = 0. Let g ∈ L↑2 \L
↑
2(ξ) be fixed. Using Proposition 14, we

can find a, b ∈ [0, 1] such that ξ(a) = ξ(b) and g(a) < g(b−). Thus, for some
δ ∈ (0, b− a)

g(a) < g(b− δ) ≤ g(b).

This inequality and the right continuity of g imply that g is not a constant
a.e. on [a, b].

Next we claim that there exists ε > 0 such that

Bε(g) ∩ L↑2 ⊆ {h ∈ L
↑
2 : h(a) < h(b)}. (10)

Indeed, let for a fixed ε > 0 (which we will choose later) we can find h from

Bε(g) ∩ L↑2 that is a constant on [a, b]. Then

‖g − h‖22 =

∫ 1

0

(g(s)− h(s))2ds ≥
∫ b

a

(g(s)− h(a))2ds

≥
∫ b

a

(
g(s)− 1

b− a

∫ b

a

g(r)dr

)2

ds = ε0 > 0,
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because g is not a constant a.e. on [a, b]. Hence, for ε < ε0 the inclusion (10)
holds.

Now we are ready to estimate Ξ(Bε(g)) for any fixed ε < ε0. So,

Ξ(Bε(g)) = Ξ
(
{h ∈ L↑2 : h(a) < h(b)} ∩Bε(g)

)
=

∞∑
n=2

∫
Qn

n∏
i=1

(qi − qi−1)νn

(
q, {h ∈ L↑2 : h(a) < h(b)} ∩Bε(g)

)
dξ⊗(n−1)(q).

Let n ≥ 2 and

Qna,b := {q ∈ Qn : qi /∈ (a, b] for all i ∈ [n− 1]}.
Then for all q ∈ Qna,b

νn

(
q, {h ∈ L↑2 : h(a) < h(b)} ∩Bε(g)

)
= 0,

since νn(q, ·) is supported on the set of step functions that have no jumps on

(a, b]. Moreover, due to the inclusion Qn \Qna,b ⊆
⋃n−1
i=1 Q

n
a,b,i, where Qna,b,i :=

{q ∈ [0, 1]n−1 : qi ∈ (a, b]}, and the equality ξ(a) = ξ(b), we have

µnξ (Qn \Qna,b) ≤
n−1∑
i=1

µnξ (Qna,b,i) =

∫
Qna,b,i

n∏
i=1

(qi − qi−1)dξ⊗(n−1)(q)

≤
n−1∑
i=1

(ξ(1)− ξ(0))n−2(ξ(b)− ξ(a)) = 0.

Thus, Ξ(Bε(g)) = 0. This finishes the proof of the proposition. ut

Corollary 1 If ]ξ ≥ n, then suppΞn = L↑2(ξ)∩{g ∈ L↑2 : ]g ≤ n}. Otherwise,
Ξn = 0.

Proof The inclusion suppΞn ⊆ L↑2(ξ)∩{g ∈ L↑2 : ]g ≤ n} immediately follows
from Proposition 2 and Lemma 2 (iii).

Next assuming ]ξ ≥ n, we prove that

Ξn(Bε(g)) > 0 (11)

for all g ∈ L↑2(ξ) ∩ {g ∈ L↑2 : ]g ≤ n} and ε > 0. Since the close of {g ∈ L↑2 :

]g = n} ∩ L↑2(ξ) in L↑2 coincides with {g ∈ L↑2 : ]g ≤ n} ∩ L↑2(ξ), it is enough
to prove inequality (11) for functions of the form

g = χ(q, x), (q, x) ∈ Qn × En0 .
So, fixing g = χ(q, x) for some (q, x) ∈ Qn × En0 , similarly as in Step I of

the proof of Proposition 2 we can show that Ξn(Bε(g)) > 0. Hence, suppΞn =

L↑2(ξ) ∩ {g ∈ L↑2 : ]g ≤ n}.
If ]ξ < n, then L↑2(ξ) ∩ {g ∈ L↑2 : ]g = n} = ∅, by Proposition 14.

Consequently, Proposition 2 together with Lemma 2 (iii) yield Ξn = 0. ut

Corollary 2 The set S↑∩L↑2(ξ) has full measure Ξ, that is, Ξ(L↑2(ξ)\S↑) = 0.

Proof The corollary follows from the definition of the measure Ξ and Corol-
lary 1. ut
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5 Definition of the Dirichlet form in the general case

In this section we define the Dirichlet form in general case. As before, we will
assume that ξ ∈ D↑ is a bounded function that generates the measure Ξ on
L↑2. Since this measure is supported on the space L↑2(ξ), hereinafter we will

work with spaces L↑2(ξ) and L2(ξ) instead of L↑2 and L2. Let L2(L↑2(ξ), Ξ) or

simpler L2(Ξ) denote the space of Ξ-integrable functions on L↑2 with the usual
norm ‖ · ‖L2(Ξ) and the inner product 〈·, ·〉L2(Ξ).

5.1 A set of admissible functions on L↑2(ξ)

Let C∞b (Rm) denote the set of all infinitely differentiable (real-valued) func-
tions on Rm with all partial derivatives bounded and C∞0 (Rm) be the set of
functions from C∞b (Rm) with compact support. In this section we want to de-

fine the class of “smooth” integrable functions on L↑2(ξ). Since L↑2(ξ) ⊆ L2(ξ),
it is reasonable to consider functions of the form u(〈·, h1〉, . . . , 〈·, hm〉), where
u ∈ C∞b (Rm) and hj ∈ L2(ξ), j ∈ [m]. But in general, these functions are not
integrable with respect to the measure Ξ. So, we will cut off they by functions
with bounded support in L↑2(ξ). Let FC denote the linear space generated by

functions on L↑2(ξ) of the form

U = u(〈·, h1〉, . . . , 〈·, hm〉)ϕ(‖ · ‖22) = u(〈·,h〉)ϕ(‖ · ‖22), (12)

where u ∈ C∞b (Rm), ϕ ∈ C∞0 (R) and hj ∈ L2(ξ), j ∈ [m].

Remark 11 (i) The set FC is an associative algebra, in particular, U, V ∈ FC
implies UV ∈ FC.

(ii) Since each U ∈ FC has a bounded support, FC ⊆ L2(L↑2(ξ), Ξ), by Re-
mark 9.

(iii) For each n ≥ 2 and q ∈ Qn the function x 7→ U(χn(q, x)) belongs to
C∞0 (En) and, similarly, x 7→ U(χ1(x)) belongs to C∞0 (R).

Proposition 3 The set FC is dense in L2(L↑2(ξ), Ξ).

Proof Let ϕn ∈ C∞0 (R) take values from [0, 1] and satisfy

ϕn(x) =

{
1, |x| ≤ n2 − 1,

0, |x| ≥ n2,

and let U ∈ L2(Ξ). Since

‖U − Uϕn(‖ · ‖22)‖2L2(Ξ) =

∫
L↑2(ξ)

U2(g)
(
1− ϕn

(
‖g‖22

))2
Ξ(dg)

=

∫
Bcn

U2(g)
(
1− ϕn

(
‖g‖22

))2
Ξ(dg)

≤
∫
Bcn

U2(g)Ξ(dg)→ 0 as n→∞,
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where Bn = {g ∈ L↑2(ξ) : ‖g‖2 ≤ n}, it is enough to show that Uϕn(‖ · ‖22)
can be approximated by functions from FC.

Let Un be the restriction of U on the ball Bn. Since Un ∈ L2(Bn, Ξ|Bn)
and the restriction Ξ|Bn of Ξ on Bn is a finite measure, the function Un can be
approximated in L2(Bn, Ξ|Bn) by functions of the form u(〈·, h1〉, . . . , 〈·, hm〉),
where u ∈ C∞b (Rm) and hj ∈ L2(ξ), j ∈ [m], by the monotone class theorem

(see, e.g. A0.6 [52]). Thus, for a fixed ε > 0 there exists a function Ũ =
u(〈·, h1〉, . . . , 〈·, hm〉) such that∫

Bn

(
Un(g)− Ũ(g)

)2
Ξ(dg) < ε.

Consequently, ∫
L↑2(ξ)

(
U(g)ϕn

(
‖g‖22

)
− Ũ(g)ϕn

(
‖g‖22

))2
Ξ(dg)

=

∫
Bn

(
U(g)− Ũ(g)

)2
ϕ2
n

(
‖g‖22

)
Ξ(dg)

≤
∫
Bn

(
Un(g)− Ũ(g)

)2
Ξ(dg) < ε.

It proves the proposition. ut

5.2 Differential operator and integration by parts formula

In this section we define the differential operator D on FC.
For each U ∈ FC given by (12), i.e. U = u(〈·, h1〉, . . . , 〈·, hm〉)ϕ(‖ · ‖22), the

differential operator is defined as follows

DU(g) := prg
[
∇L2U(g)

]
= ϕ(‖g‖22)

m∑
j=1

∂ju(〈g,h〉) prg hj+u(〈g,h〉)ϕ′(‖g‖22)2g,

(13)
where ∇L2 denotes the Fréchet derivative on L2 and ∂ju(y) = ∂

∂yj
u(y), y ∈

Rm. For any function U ∈ FC, DU is define by linearity.
A simple calculation gives the following statement.

Lemma 7 For all (q, x) ∈ Qn × En0 , n ≥ 2,

DU(χn(q, x)) =

n∑
i=1

∂

∂xi
U(χn(q, x))

I[qi−1,qi)

(qi − qi−1)

and

DU(χ1(x)) =
d

dx
U(χ1(x))I[0,1].

In particular, for each i ∈ [n]

〈DU(χn(q, x)), I[qi−1,qi)〉 = 〈∇L2U(χn(q, x)), I[qi−1,qi)〉 =
∂

∂xi
U(χn(q, x)).
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The definition of the differential operator and Lemma 7 immediately im-
plies some trivial properties of D.

Remark 12 (i) For each U ∈ FC, DU maps L↑2(ξ) into L2(ξ) and, in general,
DU is not continuous, since pr· h is not, for each non constant function
h ∈ L2(ξ).

(ii) D is a linear operator satisfying the Leibniz rule.

(iii) For each U ∈ FC, f ∈ L2(ξ) and g ∈ L↑2(ξ)

DfU(g) := 〈DU(g), f〉 = lim
ε↓0

U
(
g + εprg f

)
− U(g)

ε
.

Now we prove the integration by parts formula. For this we first define
the second order differential operator on FC in a similar way as in the finite
dimensional case. We set for U ∈ FC

L0U(g) =



∑n
i=1

∂2

∂x2
i
U(χn(q, x)) 1

(qi−qi−1)
, g = χn(q, x), n ≥ 2,

(q, x) ∈ Qn × En0 ,
d2

dx2U(χ1(x)), x ∈ R,
0, otherwise.

Using a simple calculation and Remark 4, we can prove the following
lemma.

Lemma 8 If U ∈ FC is given by (12), then

L0U(g) = ϕ(‖g‖22)

m∑
i,j=1

∂i∂ju(〈g,h〉)〈prg hi,prg hj〉

+ u(〈g,h〉)
[
4ϕ′′(‖g‖22)‖g‖22 + 2ϕ′(‖g‖22) · ]g

]
+ 2

m∑
j=1

∂ju(〈g,h〉)ϕ′(‖g‖22)〈prg hi, g〉, g ∈ S↑,

and
L0U(g) = 0, g ∈ L↑2(ξ)\S↑.

Theorem 3 (Integration by parts formula) Let U, V ∈ FC. Then∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ(dg) = −
∫
L↑2(ξ)

L0U(g)V (g)Ξ(dg)

−
∫
L↑2(ξ)

V (g)〈∇L2U(g)−DU(g), ξ〉Ξ(dg).

In particular, if U is given by (12), then∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ(dg) = −
∫
L↑2(ξ)

L0U(g)V (g)Ξ(dg)

−
∫
L↑2(ξ)

ϕ(‖g‖22)V (g)

m∑
j=1

∂ju(〈g,h〉)〈hj , ξ − prg ξ〉Ξ(dg).

(14)
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We remark that∇L2U(g)−DU(g) coincides with the projection of∇L2U(g)
on the orthogonal complement of L2(g) in L2.

Proof (Proof of Theorem 3) To prove the proposition, we will use Lemma 7
and the integration by parts formula for the Riemann integral.

So, first we note that

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ1(dg) = −
∫
L↑2(ξ)

L0U(g)V (g)Ξ1(dg). (15)

Indeed, by (5) and Remark 11 (iii),

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ1(dg) =

∫
R
〈DU(χ1(x)),DV (χ1(x))〉dx

=

∫
R

d

dx
U(χ1(x))

d

dx
V (χ1(x)))dx

= −
∫
R

(
d2

dx2
U(χ1(x))

)
V (χ1(x)))dx

= −
∫
L↑2(ξ)

L0U(g)V (g)Ξ1(dg).

Next, we check that for each n ≥ 2

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξn(dg) = −
∫
L↑2(ξ)

L0U(g)V (g)Ξn(dg)

−
∫
L↑2(ξ)

〈∇L2U(g)−DU(g), ξ〉V (g)Ξn−1(dg).

(16)

To show this, we reduce the integral over Ξn to the Riemann-Stieltjes integral
similarly as in the previous case. So, by Lemma 2 (i), we have

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξn(dg)

=

∫
Qn

n∏
i=1

(qi − qi−1)

[∫
En
〈DU(χ(q, x)),DV (χ(q, x))〉λn(dx)

]
dξ⊗(n−1)(q).
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Next, we fix q ∈ Qn and apply to the integral over λn the usual integration
by parts formula. Consequently, using Lemma 7, we obtain∫

En
〈DU(χ(q, x)),DV (χ(q, x))〉λn(dx)

=

∫
En

n∑
i=1

∂

∂xi
U(χ(q, x))

∂

∂xi
V (χ(q, x))

1

qi − qi−1
λn(dx)

= −
∫
En

n∑
i=1

(
∂2

∂x2i
U(χ(q, x))

)
1

qi − qi−1
V (χ(q, x))λn(dx)

+

n∑
i=1

∫
En−1

[(
∂

∂xi
U(χ(q, x))

)
V (χ(q, x))

]∣∣∣∣xi=xi+1

xi=xi−1

λn−1(dx(i))

qi − qi−1
=: I1(q) + I2(q),

where x(i) = (x1, . . . , xi−1, xi+1, . . . , xn), x0 = −∞ and xn+1 = +∞.
By the definition of the operator L0 and Lemma 2 (i), we have that∫
Qn

(
n∏
i=1

(qi − qi−1)

)
I1(q)dξ⊗(n−1)(q) = −

∫
L↑2(ξ)

L0U(g)V (g)Ξn(dg).

Next we rewrite I2(q). By Lemma 7, we obtain

I2(q) =

n∑
i=1

∫
En−1

[〈
∇L2U(χ(q, x)), I[qi−1,qi)

〉
V (χ(q, x))

]∣∣xi=xi+1

xi=xi−1

λn−1(dx(i))

qi − qi−1

=

n−1∑
i=1

∫
En−1

〈
∇L2U(χ(q(i), x)), ei(q)− ei+1(q)

〉
V (χ(q(i), x))λn−1(dx),

where q(i) is defined similarly as x(i), removing the i-th coordinate, and ei(q) :=
I[qi−1,qi)

qi−qi−1
, i ∈ [n]. For a simplification of notation, we denote

cn(q) =

n∏
i=1

(qi − qi−1).

Then∫
Qn

cn(q)I2(q)dξ⊗(n−1)(q) =

n∑
i=1

∫
En−1

[ ∫
Qn

cn(q)
〈
∇L2U(χ(q(i), x)), ei(q)

− ei+1(q)
〉
V (χ(q(i), x))dξ⊗(n−1)(q)

]
λn−1(dx)

=

n∑
i=1

∫
En−1

[ ∫
Qn−1

cn−1(q(i))
〈
∇L2U(χ(q(i), x)), f(q(i))

〉
· V (χ(q(i), x))dξ⊗(n−2)(q(i))

]
λn−1(dx),
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where

f(q(i)) :=

∫ qi+1

qi−1

(qi+1 − qi)(qi − qi−1)

qi+1 − qi−1
(ei(q)− ei+1(q))dξ(qi).

Integrating by parts, we obtain

f(q(i))(r) =

(∫ qi+1

r

qi+1 − qi
qi+1 − qi−1

dξ(qi)−
∫ r

qi−1

qi − qi−1
qi+1 − qi−1

dξ(qi)

)
I[qi−1,qi+1)(r)

=

(
1

qi+1 − qi−1
〈
ξ, I[qi−1,qi+1)

〉
− ξ(r)

)
I[qi−1,qi+1)(r), r ∈ [0, 1].

Hence,∫
Qn

cn(q)I2(q)dξ⊗(n−1)(q) =

∫
Qn−1

cn−1(q)

[ ∫
En−1

〈
∇L2U(χ(q, x)),prχ(q,x̃) ξ − ξ

〉
· V (χ(q, x))λn−1(dx)

]
dξ⊗(n−2)(q),

where x̃ is any point from En−10 (here prχ(q,x̃) = prχ(q,ỹ) for all x̃, ỹ ∈ En−10 ).
This immediately implies∫

Qn

(
n∏
i=1

(qi − qi−1)

)
I2(q)dξ⊗(n−1)(q)

= −
∫
L↑2(ξ)

〈∇L2U(g), ξ − prg ξ〉V (g)Ξn−1(dg)

= −
∫
L↑2(ξ)

〈∇L2U(g)−DU(g), ξ〉V (g)Ξn−1(dg),

where we have used the trivial equality

〈∇L2U(g)−DU(g), ξ〉 = 〈∇L2U(g), ξ − prg ξ〉 (17)

It proves (16).
Next, summing (15) and (16) over n and using Remark 9, we obtain the

integration by parts formula. (14) easily follows from (17) and the equality
〈g,prg ξ − ξ〉 = 0. The theorem is proved. ut

The same argument as in the proof of the previous theorem gives the
adjoint operator for Df = 〈D·, f〉, f ∈ L↑2(ξ).

Proposition 4 For each U, V ∈ FC and f ∈ L2∫
L↑2(ξ)

(DfU(g))V (g)Ξ(dg) = −
∫
L↑2(ξ)

U(g)DfV (g)Ξ(dg)

−
∫
L↑2(ξ)

U(g)V (g)〈f, ξ − prg ξ〉Ξ(dg).

Remark 13 The adjoint operator for Df is given by the formula

D∗fU(g) = −DfU(g)− 〈f, ξ − prg ξ〉U(g), g ∈ L↑2(ξ), U ∈ FC.
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5.3 The Dirichlet form (E ,D)

We define

E(U, V ) =
1

2

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ(dg), U, V ∈ FC.

Then (E ,FC) is a densely defined positive definite symmetric bilinear form on

L2(L↑2(ξ), Ξ), by Proposition 3. The integration by parts formula implies that
there exists a negative definite symmetric linear operator L on L2(Ξ), given
by

LU(g) : =
1

2

[
L0U(g) + 〈∇L2U(g)−DU(g), ξ〉

]
=

1

2

L0U(g) + ϕ(‖g‖22)

m∑
j=1

∂ju(〈g,h〉)〈ξ − prg ξ, hj〉

 , g ∈ L↑2(ξ),

(18)

if U ∈ FC is defined by (12), such that

E(U, V ) = −〈LU, V 〉L2(Ξ).

Consequently, by Proposition I.3.3 [39], (E ,FC) is closable on L2(Ξ).

Definition 1 The closure (E ,FC) on L2(Ξ) is denoted by (E ,D).

Remark 14 We can extend the differential operator D to D, letting

DU := lim
n→∞

DUn in L2(Ξ),

if {Un, n ≥ 1} ⊂ FC converges to U ∈ D with respect to the norm E
1
2
1 , where

E1 := E(·, ·) + 〈·, ·〉L2(Ξ). Then, for all U, V ∈ D

E(U, V ) =
1

2

∫
L↑2(ξ)

〈DU(g),DV (g)〉Ξ(dg). (19)

Next we are going to check that (E ,D) is a Dirichlet form. For this we need
an analog of the chain rule.

Lemma 9 Let F ∈ C1(Rk), F (0) = 0 and Uj ∈ FC, j ∈ [k]. Then the
composition F (U) = F (U1, . . . , Uk) belongs to D and

DF (U)(g) =

k∑
j=1

∂jF (U(g))DUj(g), g ∈ L↑2(ξ).
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Proof We will prove the lemma, using the approximation of F by the Bernstein
polynomials and the fact that FC is an associative algebra (see Remark 11 (i)).

Since Uj , j ∈ [k], belong to FC, they are bounded by a constant M , i.e.

|Uj(g)| ≤ M for all g ∈ L↑2(ξ). Next let polynomials PMn (F ; ·), n ≥ 1, be
defined by (39). Then by Lemma 16,∣∣PMn (F ;U(g))− F (U(g))

∣∣ ≤ sup
x∈[−M,M ]k

∣∣PMn (F ;x)− F (x)
∣∣ IsuppU (g)→ 0,

as n → ∞, where suppU :=
⋃k
j=1 suppUj . Hence, by remarks 9, 11 (ii) and

the dominated convergence theorem, we have that {PMn (F ;U)}n≥1 converges
to F (U) in L2(Ξ).

Remark 11 (ii) and the fact that PMn (F ; 0) = 0 imply that PMn (F ;U) ∈ FC.
Moreover, the Leibniz rule for D (see Remark 12) yields

DPMn (F ;U)(g) =

k∑
j=1

∂jP
M
n (F ;U(g))DUj(g), g ∈ L↑2(ξ).

Using the estimate∣∣∂jPMn (F ;U(g))DUj(g)− ∂jF (U(g))DUj(g)
∣∣

≤ sup
x∈[−M,M ]k

∣∣∂jPMn (F ;x)− ∂jF (x)
∣∣ |DUj(g)|,

Lemma 16 and the dominated convergence theorem, we obtain that
{DPMn (F ;U)}n≥1 converges to

∑k
j=1 ∂jF (U)DUj in L2(Ξ). It finishes the

proof of the lemma. ut

Corollary 3 For each u ∈ C1
b (Rm), hj ∈ L2(ξ), j ∈ [m], and ϕ ∈ C∞0 (R) the

function U = u(〈·, h1〉, . . . , 〈·, hm〉)ϕ(‖ · ‖22), belongs to D and DU is given by
formula (13).

Proof Let ψ ∈ C∞0 (R) and ψ = 1 on suppϕ. We set

Vj = 〈·, hj〉ψ(‖ · ‖22), j ∈ [m],

and
Vm+1 = ϕ(‖ · ‖22).

It is easy to see that Vj ∈ FC for all j ∈ [m+ 1] (since 〈·, hj〉 can be replaced
by u(〈·, hj〉) in the definition of Vj for some u ∈ C∞b (R)). Then, by Lemma 9,

U = F (V1, . . . , Vm, Vm+1)

belongs to D, where F (x1 . . . , xm, xm+1) = u(x1, . . . , xm) · xm+1. Moreover,
a simple calculation gives that DU = DF (V ) is given by (13). It proves the
corollary. ut

Next we give the analog of the chain rule for D that easily follows from
Lemma 9 and the closability of (E ,D).
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Proposition 5 Let F ∈ C1
b (Rk), F (0) = 0 and Uj ∈ D, j ∈ [k]. Then the

composition F (U) = F (U1, . . . , Uk) belongs to D and

DF (U)(g) =

k∑
j=1

∂jF (U(g))DUj(g), g ∈ L↑2(ξ).

Now we are ready to prove that (E ,D) is a Dirichlet form on L2(L↑2(ξ), Ξ).

For U, V : L↑2(ξ)→ R we set

U ∧ V = min{U, V } and U ∨ V = max{U, V }.

Proposition 6 The bilinear form (E ,D) is a symmetric Dirichlet form on

L2(L↑2(ξ), Ξ), that is, for all U ∈ D the function (U ∨ 0) ∧ 1 belongs to D and

E((U ∨ 0) ∧ 1, (U ∨ 0) ∧ 1) ≤ E(U,U).

Proof To prove the proposition, we need to show that for each U ∈ D and
ε > 0 there exists a function Fε : R → [−ε, 1 + ε] such that Fε(x) = x for all
x ∈ [0, 1], 0 ≤ Fε(x2)− Fε(x1) ≤ x2 − x1 if x1 ≤ x2, Fε(U) ∈ D and

lim sup
ε→0

E(Fε(U), Fε(U)) ≤ E(U,U),

according to Proposition I.4.7 [39].
We take for ε > 0 an arbitrary non decreasing continuously differentiable

function Fε : R→ [−ε, 1 + ε] such that |F ′(x)| ≤ 1, x ∈ R, and Fε(x) = x for
all x ∈ [0, 1]. Then it is clear that 0 ≤ Fε(x2) − Fε(x1) ≤ x2 − x1 if x1 ≤ x2.
By Proposition 5, Fε(U) ∈ D and

lim sup
ε→0

E(Fε(U), Fε(U)) =
1

2
lim sup
ε→0

∫
L↑2(ξ)

|F ′ε(U(g))|2‖DU(g)‖22Ξ(dg) ≤ E(U,U).

It proves the proposition. ut

Lemma 10 Let U, V in D. Then U ∨ V ∈ D and

E(U ∨ V,U ∨ V ) ≤ E(U,U) ∨ E(V, V ). (20)

Proof The fact that U ∨ V ∈ D follows from Proposition I.4.11 [39]. Inequal-
ity (20) can be proved similarly as Lemma IV.4.1 [39]. ut

Lemma 11 Let U, V ∈ D and |U | ∨ ‖DU‖2 is bounded Ξ-a.e. Then U ·V ∈ D
and D(U · V ) = (DU) · V + U ·DV .

Proof The lemma follows from Corollary I.4.15 and Proposition 5, using an
approximation (w.r.t E 1

2 -norm) of V by bounded functions. ut

6 Quasi-regularity of the Dirichlet form (E,D)

In this section we prove that (E ,D) is quasi-regular that will imply the exis-

tence of a Markov process in L↑2(ξ) that is properly associated with (E ,D).
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6.1 Functions with compact support

The aim of this section is to prove that the domain D of the Dirichlet form
contains a rich enough subset of functions with compact support.

Lemma 12 For each p ∈
[
2, 52
]
, g0 ∈ L↑2(ξ) and ϕ ∈ C∞0 (R) the function ϕ(‖·

−g0‖pp) belongs to D. Moreover, Dϕ(‖ · −g0‖22)(g) = 2ϕ′(‖g− g0‖22) prg(g− g0)
for all g ∈ L2(Ξ).

Proof For simplicity we give the proof for g0 = 0.

Let {hn}n≥1 ⊆ L∞ be a dense subset in Lq with ‖hn‖q = 1, where 1
p + 1

q =
1. Then

‖g‖p = sup
n≥1
|〈g, hn〉| = sup

n≥1

∣∣∣∣∫ 1

0

g(s)hn(s)ds

∣∣∣∣ .
Next we take functions ψ1, ψ2 ∈ C∞0 (R) such that ψ1 = 1 on [−M −

1,M + 1], suppψ1 ⊆ [−2M − 2, 2M + 2], ψ2 = 1 on [−M,M ] and suppψ2 ⊆
[−M−1,M+1], where M is chosen such that the interval [−M

p
2 ,M

p
2 ] contains

suppϕ, and define for each n ≥ 1

Un(g) := max
i∈[n]
|〈g, hi〉|pψ1(‖g‖22), g ∈ L↑2(ξ),

and

Vn(g) := ϕ(Un(g))ψ2(‖g‖22) = ϕ

(
max
i∈[n]
|〈g, hi〉|p

)
ψ2(‖g‖22), g ∈ L↑2(ξ).

Let us note that Un ∈ D, n ≥ 1, by Corollary 3 and Lemma 10. Hence, due to
Proposition 5, Vn also belongs to D for all n ≥ 1.

By the choice of the function ψ2, it is easy to see that for all g ∈ L↑p

Vn(g)→ ϕ(‖g‖pp)ψ2(‖g‖22) = ϕ(‖g‖pp), as n→∞,

and, consequently, {Vn}n≥1 converges to ϕ(‖·‖pp) Ξ-a.e., by Corollary 2. More-
over,

|Vn(g)− ϕ(‖g‖pp)| ≤ 2‖ϕ‖∞I{‖g‖22≤M+1}, n ≥ 1.

The dominated convergence theorem implies that {Vn}n≥1 converges to ϕ(‖ ·
‖pp) in L2(Ξ).
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Next, using Proposition 5 and Lemma 10, we can estimate

E(Vn, Vn) ≤ 1

2
‖ϕ′‖2∞‖ψ2‖2∞

∫
L↑2(ξ)

‖DUn‖22Ξ(dg)

+ 2‖ϕ‖2∞
∫
L↑2(ξ)

(
ψ′2(‖g‖22)

)2 ‖g‖22Ξ(dg)

≤ 1

2
‖ϕ′‖2∞‖ψ2‖2∞max

i∈[n]

∫
L↑2(ξ)

[
ψ2
1(‖g‖22)p2|〈g, hi〉|2p−2‖ prg hi‖22

+ 4|〈g, hi〉|p
(
ψ′1(‖g‖22)

)2 ‖g‖22]Ξ(dg)

+ 2‖ϕ‖2∞‖ψ′2‖2∞
∫
L↑2(ξ)

‖g‖22I{‖g‖22≤M+1}Ξ(dg)

≤ 1

2
p2‖ϕ′‖2∞‖ψ2‖2∞‖ψ1‖2∞

·max
i∈[n]

∫
L↑2(ξ)

|〈g, hi〉|2p−2‖ prg hi‖22I{‖g‖22≤M+1}Ξ(dg)

+ 2‖ϕ′‖2∞‖ψ2‖2∞‖ψ1‖2∞
∫
L↑2(ξ)

|〈g, hi〉|p‖g‖22I{‖g‖22≤2M+2}Ξ(dg)

+ 2‖ϕ‖2∞‖ψ′2‖2∞
∫
L↑2(ξ)

‖g‖22I{‖g‖22≤M+1}Ξ(dg).

Using Hölder’s inequality |〈g, hi〉| ≤ ‖hi‖q‖g‖p = ‖g‖p and Lemma 3, we have
that

sup
n∈N
E(Vn, Vn) <∞,

if p ∈
[
2, 52
]
.

Hence, Lemma I.2.12 [39] yields ϕ(‖ · ‖pp) ∈ D and

E(ϕ(‖ · ‖pp), ϕ(‖ · ‖pp)) ≤ lim inf
n→∞

E(Vn, Vn). (21)

In order to compute Dϕ(‖ ·−g0‖22), we take an orthonormal basis {hn}n≥1
in L2 and note that

‖g − g0‖2 =

∞∑
n=1

(〈g, hn〉 − 〈g0, hn〉)2.

Taking ψ ∈ C∞0 (R) such that ψ = 1 on an interval [−M,M ] that contains
suppϕ and setting

Wn(g) = ϕ

(
n∑
i=1

(〈g, hi〉 − 〈g0, hi〉)2
)
ψ(‖g‖22), g ∈ L↑2(ξ),

a simple calculation shows that

Wn → ϕ(‖ · −g0‖22)
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and

‖DWn −Dϕ(‖ · −g0‖22)‖2 → 0

in L2(Ξ) as n→∞. The lemma is proved. ut

Corollary 4 For each ϕ ∈ C∞0 (R) and g0 ∈ L↑2(ξ) the function U = ‖ ·
−g0‖2ϕ(‖ · ‖22) belongs to D. Moreover, ‖DU‖ ≤ 1 Ξ-a.e. on Br = {g ∈
L↑2(ξ) : ‖g‖2 ≤ r}, if ϕ = 1 on [−r2, r2].

Proof We take ψ ∈ C∞0 (R) such that ψ = 1 on an interval [−M,M ] which
contains suppϕ. For each δ > 0, we set

Vδ(g) =
(
‖g − g0‖22 ∨ δ2

)
ψ(‖g‖22), g ∈ L↑2(ξ).

Let ψδ ∈ C∞b (R) and ψδ(x) =
√
|x| for all δ ≤ |x| ≤ supg |Vδ(g)|. Then by

lemmas 10, 12 and Proposition 5, the function Uδ = ψδ(Vδ)ϕ(‖ · ‖22) belongs
to D and

E(Uδ, Uδ) ≤ C <∞

for all δ > 0. Since Uδ → U = ‖·−g0‖2ϕ(‖·‖22) in L2(Ξ) as δ → 0, the function
U belongs to D, by Lemma I.2.12 [39].

A simple calculation shows that ‖DUδ‖ ≤ 1 Ξ-a.e. on Br (if ϕ = 1 on
[−r2, r2]). Hence, by Lemma I.2.12 [39], ‖DU‖ ≤ 1 Ξ-a.e. on Br. ut

Let FC0 be the linear span of the set of functions on L↑2(ξ) which have a
form

U = u(〈·, h1〉, . . . , 〈·, hm〉)ϕ(‖ · ‖pp) = u(〈·,h〉)ϕ(‖ · ‖pp), (22)

where p ∈
(
2, 52
]
, u ∈ C∞b (Rm), ϕ ∈ C∞0 (R) and hj ∈ L2(ξ), j ∈ [m].

Remark 15 Each function from FC0 has a compact support in L↑2(ξ), by
Lemma 5.1 [31].

Proposition 7 The set FC0 is dense in D with respect to the norm E
1
2
1 .

Proof First we note that by Proposition 5 and Lemma 12, FC0 ⊂ D.

To prove the proposition, it is enough to show that each element of FC can
be approximated by elements from FC0. So, let U ∈ FC is given by (12), i.e.
U = u(〈·,h〉)ϕ(‖ · ‖22). By the dominated convergence theorem and Lemma 4,

Up = u(〈·,h〉)ϕ(‖ · ‖pp)→ U in L2(Ξ) as p ↓ 2.
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Next, using Proposition 5, we can estimate,

E(Up, Up) =
1

2

∫
L↑2(ξ)

‖DUp(g)‖22Ξ(dg)

≤ 2m−1
m∑
j=1

∫
L↑2(ξ)

ϕ2(‖g‖pp)(∂ju(〈g,h〉))2‖prg hj‖22Ξ(dg)

+ 2m−1
∫
L↑2(ξ)

(u(〈g,h〉))2‖Dϕ(‖ · ‖pp)(g)‖22Ξ(dg)

≤ 2m−1‖ϕ‖2∞
m∑
j=1

‖∂ju‖2∞‖hj‖22
∫
L↑2(ξ)

ϕ2(‖g‖pp)Ξ(dg)

+ ‖u‖2∞E(ϕ(‖ · ‖pp), ϕ(‖ · ‖pp)) < C

uniformly in p ∈
(
2, 52
]
, by estimate (21), Lemma 3 and the inequality ‖g‖2 ≤

‖g‖p for p > 2.
Hence, by Lemma I.2.12 [39], there exists a subsequence {Upk}k≥1 (pk ↓ 2)

such that its Cesaro mean

Vn =
1

n

n∑
k=1

Unk → U

in D (w.r.t. E
1
2
1 -norm) as n → ∞. Since, FC0 is linear, Vn ∈ FC0, n ∈ N. So,

it gives the needed approximation. The proposition is proved. ut

6.2 Quasi-regularity and local property of (E ,D)

The aim of this section is to show that (E ,D) is a quasi-regular Dirichlet form.
Let

DK =
{
U ∈ D : U = 0 Ξ-a.e. on L↑2(ξ) \K

}
.

We recall that an increasing sequence {Kn}n≥1 of closed subsets of L↑2(ξ) is

called an E-nest2 if
⋃∞
n=1 DKn is dense in D (w.r.t. E 1

2 -norm).

Proposition 8 The Dirichlet form (E ,D) is quasi-regular, that is, it has the
following properties

(i) there exists an E-nest {Kn}n≥1 consisting of compact sets;

(ii) there exists a dense subset of D (w.r.t. E
1
2
1 -norm) whose elements have

E-quasi-continuous Ξ-version;
(iii) there exists Un ∈ D, n ∈ N, having E-quasi-continuous Ξ-version Ũn,

n ∈ N, and an E-exceptional set A ⊂ L↑2(ξ) such that {Ũn, n ∈ N} separates

points of L↑2(ξ) \A.

2 The definitions of E-nest, E-quasi-continuity, quasi-regularity and local property are
taken from [39] (see definitions III.2.1, III.3.2, IV.3.1 and V.1.1, respectively)
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Proof Properties (ii) and (iii) follow from the fact that FC is dense in D (w.r.t.

E 1
2 -norm) and FC separates points, since {〈·, h〉, h ∈ L2} separates the points

of L↑2(ξ).

To prove (i), we set

Kn =
{
g ∈ L↑2(ξ) : ‖g‖2+ 1

n
≤ n

}
.

Then {Kn}n≥1 is an increasing sequence of compact sets, by Lemma 5.1 [31].
Moreover, it is easily seen that

FC0 ⊆
∞⋃
n=1

DKn .

Consequently, Proposition 7 yields (i). It proves the proposition. ut

Proposition 9 The Dirichlet form (E ,D) has the local property, that is,
E(U, V ) = 0 for all U, V ∈ D with supp(U ·Ξ)∩supp(V ·Ξ) = ∅ and supp(U ·Ξ),
supp(V ·Ξ) compact.

Proof Let U ∈ D with KU := supp(U · Ξ) compact. First we note that the

equality U = 0 Ξ-a.e. on a ball Br(g0) = {g ∈ L↑2(ξ) : ‖g − g0‖2 < r} implies
DU = 0 Ξ-a.e. on Br(g0). Indeed, let KU ⊂ BR(g0) for some constant R > 0.
We take ε ∈ (0, 1) and ϕ ∈ C∞0 (R) such that ϕ(x) = 0 for all |x| ≤ (1 − ε)r2
and ϕ(x) = 1 for all r2 ≤ |x| ≤ R2. Then by lemmas 12 and 11, we can

conclude that for all g ∈ L↑2(ξ)

DU(g) = D
[
Uϕ(‖ · −g0‖22)

]
(g)

= (DU(g))ϕ(‖g − g0‖22) + 2U(g)ϕ′(‖g − g0‖22)g.

Hence DU(g) = 0 Ξ-a.e. on B(1−ε)r(g0). Since ε is arbitrary, we obtain DU = 0
Ξ-a.e. on Br(g0).

Next the statement trivially follows from (19). The proposition is proved.
ut

We also give some variant of the local property of (E ,D) which will be
needed in Section 7. The definition is taken from [5, 9].

Lemma 13 For each U ∈ D and F,G ∈ C1
b (R) with suppF ∩ suppG = ∅,

E(F (U)− F (0), G(U)−G(0)) = 0.

Proof The lemma immediately follows from Proposition 5. ut
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6.3 Strictly quasi-regularity and conservativeness in a partial case

In this subsection we will suppose that ξ is constant on some neighbourhoods
of 0 and 1, i.e. there exists δ ∈

(
0, 12
)

such that ξ(u) = ξ(0), u ∈ [0, δ), and
ξ(u) = ξ(1), u ∈ (1− δ, 1]. Also, we set

h1 =
1

δ
I[0,δ) and h2 =

1

δ
I[1−δ,1]. (23)

In this case, the space L↑2(ξ) is locally compact, that immediately follows from
Lemma 5.1 [31] and the following lemma.

Lemma 14 For all p ≥ 2 and g ∈ L↑2(ξ) ‖g‖p ≤ |〈g, h1〉| ∨ |〈g, h2〉| ≤ 1√
δ
‖g‖2.

Proof Since g ∈ L↑2(ξ), Proposition 14 implies that g is constant on [0, δ) and
(1− δ, 1]. So,

〈g, h1〉 = g(0) and 〈g, h2〉 = g(1).

Moreover, |g(u)| ≤ |g(0)| ∨ |g(1)| for all u ∈ (0, 1), since g ∈ D↑. Hence, using
the Cauchy-Schwarz inequality, we obtain

‖g‖p ≤ |g(0)| ∨ |g(1)| = |〈g, h1〉| ∨ |〈g, h2〉| ≤
1√
δ
‖g‖2.

The lemma is proved. ut

Proposition 10 The Dirichlet form (E ,D) is strictly quasi-regular and con-
servative.

Proof To prove the strictly quasi-regularity, it is enough to check that (E ,D) is
regular3 according to Proposition V.2.12 [39]. Hence, it is needed to prove that

FC is dense in C0(L↑2(ξ)) with respect to the uniform norm, where C0(L↑2(ξ))

denotes the space of continuous functions on L↑2(ξ) with compact supports.
But this easily follows from the Stone-Weierstrass theorem, Remark 11 and
the fact that each ball in L↑2(ξ) is a compact set.

The conservativeness of (E ,D) will follow from Theorem 1.6.6 [24]. Thus,
it is enough to show that there exists a sequence {Un, n ≥ 1} ⊂ D such that

0 ≤ Un ≤ 1, lim
n→∞

Un = 1 Ξ-a.e. (24)

and
lim
n→∞

E(Un, V ) = 0 (25)

for all V ∈ D ∩ L1(L↑2(ξ), Ξ).
For each n ∈ N we take a function ψn ∈ C∞0 (R) satisfying

– suppψn ⊂ [−2n − 1, 2n + 1], ψ(x) = 1 on [−n, n] and ψn(x) ∈ [0, 1] for
n < |x| < 2n+ 1;

3 see e.g. the definition on p.118 [39]
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– |ψ′n(x)| ≤ 1
n and |ψ′′n(x)| ≤ C

n for all x ∈ R and a constant C that is
independent of n.

Also, we set

Un(g) = un(〈g, h1〉, 〈g, h2〉), g ∈ L↑2(ξ) and n ≥ 1,

where un(x, y) = ψn(x)ψn(y), x, y ∈ R, and h1, h2 are defined by (23). Then
by Lemma 14, for each ϕ ∈ C∞0 (R) satisfying ϕ = 1 on [−(2n+ 1)2, (2n+ 1)2]
the equality

Un(g) = Un(g)ϕ(‖g‖22), g ∈ L↑2(ξ),

holds. This implies that Un ∈ FC and

LU =
1

2

2∑
i,j=1

∂i∂jun(〈g, h1〉, 〈g, h2〉)〈prg hi,prg hj〉

+
1

2

2∑
j=1

∂jun(〈g, h1〉, 〈g, h2〉)〈ξ − prg ξ, hj〉, g ∈ L↑2(ξ),

for all n ≥ 1, where L is defined by (18). By the construction of Un, {Un, n ≥
1} satisfies (24). Moreover, using the Cauchy-Schwarz inequality, the trivial
inequality ‖ prg h‖2 ≤ ‖h‖2 and the dominated convergence theorem, we have

for every V ∈ D ∩ L1(L↑2(ξ), Ξ)

E(Un, V ) = −(LUn, V )L↑2(ξ)

=
1

2

2∑
i,j=1

∫
L↑2(ξ)

∂i∂jun(〈g, h1〉, 〈g, h2〉)〈prg hi,prg hj〉V (g)Ξ(dg)

+
1

2

2∑
j=1

∫
L↑2(ξ)

∂jun(〈g, h1〉, 〈g, h2〉)〈ξ − prg ξ, hj〉V (g)Ξ(dg)→ 0

as n→∞. The proposition is proved. ut

7 Intrinsic metric associated to (E,D)

The aim of this section is to prove that L2-metric is the intrinsic metric associ-
ated to (E ,D) and to prove the analog of Varadhan’s formula. For this we will
use the result obtained in [5] (see also [27] for the Dirichlet forms on L2(µ),
where µ is a probability measure).
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7.1 The boundedness of DU implies the Lipschitz continuity of U

In this section we prove that any function U from D with ‖DU‖ ≤ 1 Ξ-a.e. is
1-Lipschitz continuous.

Proposition 11 Let U ∈ D and ‖DU‖2 ≤ 1 Ξ-a.e. on a convex open set

B ⊆ L↑2(ξ). Then U has an 1-Lipschitz modification Ũ on B, i.e. there exists

a function Ũ : B → R such that Ξ{g ∈ B : Ũ(g) 6= U(g)} = 0 and

|Ũ(g1)− Ũ(g0)| ≤ ‖g1 − g0‖2 (26)

for all g0, g1 ∈ B.

Remark 16 If U ∈ FC, then

U(g1)− U(g0) =

∫ 1

0

〈DU(gt), g1 − g0〉dt

for all g0, g1 ∈ S↑, where gt = g0 + t(g1− g0). This follows from the trivial fact
that σ?(gt) ⊇ σ?(g1 − g0) for all t ∈ (0, 1) and g0, g1 ∈ S↑. Consequently, in
this case the statement holds.

Proof (Proof of Proposition 11) Step I. First we show that for each n ≥ 1, (26)

holds Ξn-a.e on B. Let n ≥ 2 be fixed. Since FC is dense in D (w.r.t. E 1
2 -norm),

there exists a sequence {Uk}k≥1 ⊂ FC such that Uk → U and ‖DUk−DU‖2 →
0 in L2(L↑2(ξ), Ξ) as k →∞. Hence, they converge in L2(L↑2(ξ), Ξn).

Let A ⊆ B such that Ξ(B \ A) = 0 and ‖DU(g)‖ ≤ 1 for all g ∈ A. We
denote

An = A ∩ {χn(q, x) : q ∈ Qn, x ∈ En0 }.

Then by Remark 4 and Lemma 2 (iii), Ξn(B \ An) = 0. Since Ξn is the
push forward of the measure µnξ ⊗ λn under the map χn (see Lemma 2 (i)),
it is easy to see that there exists Q1 ⊆ Qn such that µnξ (Qn \ Q1) = 0 and
λn(B(q) \An(q)) = 0 for all q ∈ Q1, where An(q) = {x ∈ En0 : χn(q, x) ∈ An}
and B(q) = {x ∈ En0 : χn(q, x) ∈ B}.

Next, we note that∫
L↑2(ξ)

|Uk(g)− U(g)|2Ξn(dg)

=

∫
Qn

[∫
En
|Uk(χn(q, x))− U(χn(q, x))|2λn(dx)

]
µnξ (dq)→ 0

and, similarly,∫
Qn

[∫
En
‖DUk(χn(q, x))−DU(χn(q, x))‖22λn(dx)

]
µnξ (dq)→ 0
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as k → ∞. Consequently, we can choose a subsequence {k′} ⊆ N (we assume
that {k′} coincides with N without loss of generality) and a measurable subset
Q2 ⊆ Qn such that µnξ (Qn \Q2) = 0 and for all q ∈ Q2∫

En
|Uk(χn(q, x))− U(χn(q, x))|2λn(dx)→ 0,∫

En
‖DUk(χn(q, x))−DU(χn(q, x))‖22λn(dx)→ 0

(27)

as k →∞.
Let q ∈ Q1 ∩Q2 be fixed and

fk(x) :=Uk(χn(q, x)), x ∈ En0 ,
f(x) :=U(χn(q, x)), x ∈ En0 .

Then fk, k ≥ 1, belong to C∞0 (En) and

DUk(χn(q, x)) =

n∑
i=1

∂fk(x)

∂xi

I[qi−1,qi)

qi − qi−1
, x ∈ En0 , (28)

by Lemma 7. We are going to show that DU(χn(q, ·)) is also given by (28),
where the partial derivatives of fk is replaced by the Sobolev partial derivatives
of f .

So, first we note that DU(χn(q, ·)) can be given as follows

DU(χn(q, x)) =

n∑
i=1

f̃ i(x)
I[qi−1,qi)

qi − qi−1
, x ∈ En0 ,

for some measurable functions f̃ i : En0 → R, since the set
{∑n

i=1 xiI[qi−1,qi), x ∈ Rn
}

is closed in L2(ξ). Moreover, by (27), we have that∫
En0

|fk(x)− f(x)|2λn(dx)→ 0

and ∫
En0

n∑
i=1

[
f̃ i(x)− ∂fk(x)

∂xi

]2
(qi − qi−1)λn(dx)→ 0

as k → ∞. It immediately implies that f belongs to the Sobolev space
H1,2(En0 ) with f̃ i = ∂f

∂xi
. In particular,∫

Rn
f(x)

∂ϕ(x)

∂xi
dx = −

∫
Rn
f̃ i(x)ϕ(x)dx. (29)

for each ϕ ∈ C∞0 (Rn) with suppϕ ⊂ En0 and f, f̃ i, i ∈ [n], equal zero outside
En.

Next, let ϕ ∈ C∞0 (Rn) be a non negative function with∫
Rn
ϕ(x)dx = 1.
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Then the convolution

fε(x) = f ∗ ϕε(x) =

∫
Rn
f(y)ϕε(x− y)dy, x ∈ Rn,

where ϕε(x) = ε−nϕ(xε−1), belongs to C∞(Rn) and converges to f λn-a.e. on
En0 . Moreover, by (29),

∂fε(x)

∂xi
= f̃ i ∗ ϕε(x)

for every x ∈ En0 and all ε > 0 satisfying suppϕε(x− ·) ⊂ En0 .
We recall that B(q) = {x ∈ En0 : χn(q, x) ∈ B}. Let B(q) 6= ∅. It is easily

seen that B(q) is an open convex subset of En0 . Then for each x ∈ B(q) and
ε > 0 such that suppϕε(x− ·) ⊂ B(q) we can estimate

n∑
i=1

(
∂fε(x)

∂xi

)2
1

qi − qi−1
=

n∑
i=1

(
f̃ i ∗ ϕε(x)

)2 1

qi − qi−1

≤
n∑
i=1

∫
Rn

(f̃ i(y))2ϕε(x− y)dy
1

qi − qi−1
=

∫
Rn

n∑
i=1

(f̃ i(y))2

qi − qi−1
ϕε(x− y)dy

=

∫
En0

‖DU(χn(q, y))‖22ϕε(x− y)λn(dy)

=

∫
B(q)

‖DU(χn(q, y))‖22ϕε(x− y)λn(dy) ≤ 1,

(30)

since ‖DU(χn(q, ·))‖2 ≤ 1 λn-a.e. on B(q).
Let x0, x1 ∈ B(q) and ε0 > 0 such that fε(x

i)→ f(xi) and suppϕε0(xi −
·) ⊂ B(q), i = 0, 1. Using the convexity of B(q), it is easy to see that

suppϕε0(xt − ·) ⊂ B(q), t ∈ (0, 1),

where xt = x0 + t(x1 − x0). By Hölder’s inequality and (30), we can estimate

(fε(x
1)− fε(x0))2 =

(∫ 1

0

d

dt
fε(x

t)dt

)2

=

(∫ 1

0

n∑
i=1

∂ifε(x
t)(x1i − x0i )dt

)2

≤
∫ 1

0

n∑
i=1

(
∂ifε(x

t)
)2 1

qi − qi−1
dt

n∑
i=1

(x1i − x0i )2(qi − qi−1)

≤ ‖χn(q, x1)− χn(q, x0)‖22
for all ε ∈ (0, ε0]. Hence using the convergence of fε(x

i) to f(xi), i = 0, 1, and
the previous estimate, we have that

|U(χ(q, x1))− U(χ(q, x0))| ≤ ‖χn(q, x1)− χn(q, x0)‖2. (31)

Since (31) holds for all q ∈ Q1 ∩ Q2 and xi ∈ B(q), i = 0, 1, such that
fε(x

i)→ f(xi) as ε→ 0, we have that

|U(g1)− U(g0)| ≤ ‖g1 − g0‖2, Ξn-a.e. on B, (32)



42 Vitalii Konarovskyi, Max-K. von Renesse

due to the equalities µnξ (Qn \ (Q1 ∩ Q2)) = 0 and λn{x ∈ B(q) : fε(x) 6→
f(x)} = 0.

We also note that using the same argument, we can show that (31) holds
Ξ1-a.e. on B.

Step II. Let B̃n ⊆ B ∩ suppΞn such that Ξn(B \ B̃n) = 0 and for all

g0, g1 ∈ B̃n (32) holds. Since Ξn(B \ B̃n) = 0, B̃n is dense in B ∩ suppΞn.

Consequently, there exists a unique 1-Lipschitz function Ũn : B∩suppΞn → R
that is the extension of U to B ∩ suppΞn. Moreover, Ũn = U Ξn-a.e. By the
uniqueness of the extension and Corollary 1, we have that Ũn = Ũn+1 on
B ∩ suppΞn = B ∩ {g ∈ L↑2 : ]g ≤ n}. So, we can well define

Ũ∞(g) = Ũn(g), g ∈ B ∩ suppΞn = B ∩ {g ∈ L↑2 : ]g ≤ n}.

Thus, Ũ∞ is an 1-Lipschitz function defined on B ∩ (
⋃
n=1 suppΞn) = B ∩S↑,

since for any g0, g1 ∈ B ∩ S↑ there exists n ∈ N such that g0, g1 ∈ B ∩ {g ∈
L↑2 : ]g ≤ n}. By the density of B ∩ S↑ in B, we can extend Ũ∞ to an

1-Lipschitz function Ũ defined on B, moreover Ũ = U Ξ-a.e. on B because
Ξ(L↑2(ξ) \ S↑) = 0 (see Corollary 2). It proves the proposition. ut

7.2 Intrinsic metric and Varadhan’s formula

Since the measure Ξ is σ-finite, we will define the intrinsic metric associated
to (E ,D) using a localization of the domain D (see [5]). Let L0(Ξ) denote the

set of all measurable functions on L↑2(ξ) and Kn := {g ∈ L↑2(ξ) : ‖g‖2 ≤ n},
n ∈ N. Then the family of balls {Kn}n≥1 satisfies the following conditions

(N1) For every n ∈ N there exists Vn ∈ D such that Vn ≥ 1 Ξ-a.e. on Kn;

(N2)
⋃∞
n=1 DKn is dense in D (w.r.t. E 1

2 -norm).

Remark 17 We note that the family {Kn}n≥1 is a nest. It is also a nest accord-

ing the definition given in [5], where the topology (on L↑2(ξ)) is not needed.

We set

Dloc({Kn}) =

{
U ∈ L0(Ξ) :

there exists {Un}n≥1 ⊂ D such that
U = Un Ξ-a.e. on Kn for each n

}
and let Dloc,b({Kn}) denote the set of all essentially bounded functions from
Dloc({Kn}). For U, V ∈ Db, where Db is the set of all essentially bounded
functions from D, we define

IU (V ) = 2E(UV,U)− E(U2, V ).

By the locality of (E ,D) (see Lemma 13), IU (V ) and DU can be well-defined
for all U ∈ Dloc,b({Kn}) and V ∈

⋃∞
n=1 DKn,b, where DKn,b = DKn ∩ Db,

setting IU (V ) = IUn(V ) and DU = DUn if V ∈ DKn,b and Un = U Ξ-a.e. on
Kn.
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We set

D0 =

{
U ∈ Dloc,b({Kn}) : IU (V ) ≤ ‖V ‖L1(Ξ) for every V ∈

∞⋃
n=1

DKn,b

}
.

Remark 18 According to Proposition 3.9 [5], the set D0 does not depend on
the family of increasing sets {Kn}n≥1 that satisfies (N1), (N2).

Lemma 15 The set D0 coincides with {U ∈ Dloc,b({Kn}) : ‖DU‖2 ≤ 1 Ξ-a.e.}.

Proof The statement easily follows from the relation

IU (V ) =

∫
L↑2(ξ)

‖DU(g)‖22V (g)Ξ(dg),

the density of FCKn = {U ∈ FC : U = 0 Ξ-a.e. on L↑2(ξ)\Kn} in L1(Kn, Ξ)
(w.r.t. L1-norm) and the duality between L1(Kn, Ξ) and L∞(Kn, Ξ). ut

We note that each U ∈ D0 (or from Dloc,b({Kn}) satisfying ‖DU‖2 ≤
1 Ξ-a.e.) always has a continuous modification, by Proposition 11. Further,
considering such a function, we will take its continuous modification.

Theorem 4 The intrinsic metric for the Dirichlet form (E ,D) is the L2-

metric, that is, for all g0, g1 ∈ L↑2(ξ)

‖g1 − g0‖2 = sup
U∈D0

{U(g1)− U(g0)}

= sup {U(g1)− U(g0) : U ∈ Dloc,b({Kn}), ‖DU‖2 ≤ 1 Ξ-a.e.} .

Proof The equality

sup
U∈D0

{U(g1)− U(g0)} = sup

{
U(g1)− U(g0) :

U ∈ Dloc,b({Kn}),
|DU‖2 ≤ 1 Ξ-a.e.

}
follows from Lemma 15. Proposition 11 implies the lower bound

‖g1 − g0‖ ≥ sup

{
U(g1)− U(g0) :

U ∈ Dloc,b({Kn}),
‖DU‖2 ≤ 1 Ξ-a.e.

}
.

To finish the proof, for g0, g1 ∈ L↑2(ξ) and g0 6= g1 we need to find U ∈ D0

such that U(g1)−U(g0) = ‖g1 − g0‖2. We take u ∈ C1
b (R) such that u(x) = x

for all |x| ≤ ‖g1‖2 ∨ ‖g0‖2 and |u′(x)| ≤ 1, x ∈ R, and define

U(g) = u

(
〈g, g1 − g0〉
‖g1 − g0‖2

)
, g ∈ L↑2(ξ).

Since |〈gi,g1−g0〉|‖g1−g0‖2 ≤ ‖g0‖2 ∨ ‖g1‖2, we have

U(g1)− U(g0) = ‖g1 − g0‖2.
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Moreover, it is easy to see that U ∈ Dloc,b and

DU(g) = u′
(
〈g, g1 − g0〉
‖g1 − g0‖2

)
prg(g1 − g0)

‖g1 − g0‖2
,

by Proposition 5. Consequently, ‖DU(g)‖2 ≤ 1 for all g ∈ L↑2(ξ). It proves the
theorem. ut

Next, let {Tt}t≥0 denote the semigroup on L2(L↑2(ξ), Ξ) associated with

(E ,D). For measurable sets A,B ⊆ L↑2(ξ) with positive Ξ-measure we define

Pt(A,B) =

∫
L↑2(ξ)

IA(g) · TtIB(g)Ξ(dg)

and
d(A,B) = ess inf{‖g − f‖2 : g ∈ A, f ∈ B}.

Theorem 5 For any measurable A,B ⊂ L↑2(ξ) with 0 < Ξ(A) < ∞, 0 <
Ξ(B) <∞ and A or B open the relation

lim
t→0

t lnPt(A,B) = −d(A,B)2

2

holds.

Proof The statement follows from the general result for symmetric diffusions
obtained in [5] (see Theorem 2.7 there) and Theorem 4. ut

The following result is a consequence of Theorem 5.2 [5] and Theorem 4.

Let ‖g −A‖2 := ess inff∈A ‖g − f‖2, g ∈ L↑2(ξ).

Theorem 6 Let A be a non empty open subset of L↑2(ξ) with Ξ(A) <∞ and
Θ be any probability measure which is mutually absolutely continuous with

respect to Ξ. Then the function ut = −t lnTtIA converges to
‖·−A‖22

2 in the
following senses.

(a) ut · I{ut<∞} converges to
‖·−A‖22

2 · I{‖·−A‖2<∞} in Θ-probability as t→ 0.
(b) If F is a bounded function on [0,∞] that is continuous on [0,∞), then

F (ut) converges to F
(
‖·−A‖22

2

)
in L2(L↑2(ξ), Θ) as t→ 0.

8 Sticky-reflected particle system

In this section we study some properties of the process associated with the

Dirichlet form (E ,D). Let X =
(
Ω,F , (Ft)t≥0, {Xt}t≥0, {Pg}g∈L↑2(ξ)∆

)
be a

Ξ-tight (Markov) diffusion4 process with state space L↑2(ξ) and life time ζ
that is properly associated with (E ,D). Such a process X exists and is unique

4 see Definition V.1.10 [39]
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up to Ξ-equivalence according to theorems IV.6.4 and V.1.11 [39]. We recall
that X is continuous on [0, ζ), i.e.

Pg {t 7→ Xt is continuous on [0, ζ)} = 1 for E-q.e. g ∈ L↑2(ξ).

We also remark that by Proposition 10, Pg{ζ < ∞} = 0 for E-q.e. g ∈
L↑2(ξ), if ξ is constant on some neighbourhoods of 0 and 1.

8.1 X as L2(ξ)-valued semimartingale

In this section, we show that the process Xt, t ∈ [0, ζ), is a continuous local

semimartingale in L↑2(ξ) under Pg for E-q.e. g ∈ L↑2(ξ). Letting

Mt = Xt −
1

2

∫ t

0

(ξ − prXs ξ)ds, t ∈ [0, ζ),

the following theorem holds.

Theorem 7 There exists an E-exceptional subset N of L↑2(ξ) such that for all

g ∈ L↑2(ξ) \ N and each (Ft)-stopping time τ satisfying Pg{τ < ζ} = 1 and
Eg‖Xτ

t ‖22 <∞, t ≥ 0, the process Mτ
t , t ≥ 0, is a continuous square integrable

(Ft)-martingale under Pg in L2(ξ) with the quadratic variation5

[Mτ
· ]t =

∫ t∧τ

0

prXs ds, t ≥ 0,

where Xτ
t := Xt∧τ and Mτ

t := Mt∧τ . In particular, for each h1, h2 ∈ L2(ξ)
the processes 〈Mτ

t , hi〉, t ≥ 0, i ∈ [2], are continuous square integrable (Ft)-
martingales under Pg with the joint quadratic variation

[〈Mτ
· , h1〉, 〈Mτ

· , h2〉]t =

∫ t∧τ

0

〈prXs h1, h2〉ds, t ≥ 0.

Proof The statement easily follows from the martingale problem for X (see
e.g. Theorem 3.4 (i) [3]) and the fact that for all ϕ ∈ C∞0 (R) with ϕ = 1 on

an interval [−C,C] and U(g) := 〈g, h〉ϕ(‖g‖22), g ∈ L↑2(ξ), we have

DU(g) = prg h and LU(g) =
1

2
〈ξ − prg ξ, h〉

for all g ∈ L↑2(ξ) satisfying ‖g‖22 ≤ C. ut

Corollary 5 If ξ is a constant on some neighbourhoods of 0 and 1, then for
E-q.e. g ∈ L↑2(ξ) Eg‖Xt‖22 <∞, t ≥ 0, and the process Mt, t ≥ 0, is a contin-
uous square integrable (Ft)-martingale under Pg in L2(ξ) with the quadratic
variation

[M·]t =

∫ t

0

prXs ds, t ≥ 0.

5 see Definition 2.9 [25] for the precise definition of quadratic variation of Hilbert-space-
valued martingales
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Proof According to Theorem 7, we only have to show that the processes Xt,
t ≥ 0, and Mt, t ≥ 0, are square integrable, i.e. Eg‖Xt‖22 <∞ and Eg‖Mt‖22 <
∞, t ≥ 0, for E-q.e. g ∈ L↑2(ξ).

Let the E-exceptional set N of L↑2(ξ) be as in the Theorem 7. We set

N ′ := N ∪
{
g ∈ L↑2(ξ) : Pg{ζ <∞} > 0

}
.

Then N ′ also is E-exceptional, by Proposition 10.
Let h1 and h2 be defined by (23) and g ∈ L↑2(ξ) \N ′. Then by Theorem 7,

〈Mt, hi〉, t ≥ 0, i ∈ [2], are continuous local (Ft)-martingales under Pg with
the quadratic variations satisfying

[〈M·, hi〉]t ≤ t‖hi‖22, t ≥ 0.

Thus, by Fatou’s lemma Eg〈Mt, hi〉2 < ∞ for all t ≥ 0 and i ∈ [2]. Using
Lemma 14 and the boundedness of ξ, it is easy to check that X and M are
square integrable. This proves the corollary. ut

8.2 Evolution of the empirical mass process

Let P2 denote the space of probability measures on R with the finite second
moment. We recall that P2 is a Polish space with respect to the (quadratic)
Wasserstein metric

dW(ν1, ν2) =

(
inf

ν∈χ(ν1,ν2)

∫∫
R2

|x− y|2ν(dx, dy)

) 1
2

,

where χ(ν1, ν2) denotes the set of all probability measures on R2 with marginals
ν1, ν2 ∈ P2. We denote the push forward of the Lebesgue measure Leb on [0, 1]

under g ∈ L↑2(ξ) by ιg, that is,

ιg(A) = Leb{u : g(u) ∈ A}, A ∈ B(R).

Remark 19 The map ι is bijective isometry between L2 and P2 (see e.g. Sec-
tion 2.1 [10]).

Let

µt := ιX(·, t), t ≥ 0, (33)

where ι∆ := ∆. We are going to show that the process µt, t ≥ 0, is a martingale
solution on [0, ζ) of the stochastic partial differential equation

dµt = Γ (µt)dt+ div(
√
µtdWt), (34)

with 〈α, Γ (ν)〉 = 1
2

∑
x∈supp ν α

′′(x), α ∈ C∞0 (R). In particular, it will imply
that (34) has no unique solution, since the modified massive Arratia flow is a
martingale solution of the same equation (see Section 1.3.1 [35]).



Reversible Coalescing-Fragmentating Wasserstein Dynamics on the Real Line 47

Proposition 12 For each α ∈ C1
b (R) and ϕ ∈ C∞0 (R) the function

U(g) =

∫ 1

0

α(g(s))ds · ϕ(‖g‖22), g ∈ L↑2(ξ),

belongs to D and

DU(g) = α′(g)ϕ(‖g‖22) +

∫ 1

0

α(g(s))ds · 2ϕ′(‖g‖22)g, g ∈ L↑2(ξ).

Proof The proof is given in the appendix. ut

Corollary 6 Let αj ∈ C1
b (R), j ∈ [m], ϕ ∈ C∞0 (R) and u ∈ C1

b (Rm). Then
the function

U(g) = u

(∫ 1

0

α1(g(s))ds, . . . ,

∫ 1

0

αm(g(s))ds

)
ϕ(‖g‖22)

= u

(∫ 1

0

α(g(s))ds

)
ϕ(‖g‖22), g ∈ L↑2(ξ),

(35)

belongs to D and

DU(g) =

m∑
j=1

∂ju

(∫ 1

0

α(g(s))ds

)
α′(g)ϕ(‖g‖22)

+ u

(∫ 1

0

α(g(s))ds

)
· 2ϕ′(‖g‖22)g, g ∈ L↑2(ξ).

(36)

Proof We take

F (x1, . . . , xm, xm+1) = u(x1, . . . , xm)xm+1, x ∈ Rm+1,

Vj(g) =

∫ 1

0

αj(g(s))ds · ϕj(‖g‖22), g ∈ L↑2(ξ), j ∈ [m],

Vm+1(g) = ϕ(‖g‖22), g ∈ L↑2(ξ),

where ϕj ∈ C∞0 (R) with ϕj = 1 on suppϕ. Then by propositions 5 and 12,
the function

U(g) = u

(∫ 1

0

α(g(s))ds

)
ϕ(‖g‖22) = F (V1(g), . . . , Vm+1(g)), g ∈ L↑2(ξ),

belongs to D and (36) holds. The corollary is proved. ut

Proposition 13 Let αj ∈ C2
b (R), j ∈ [m], ϕ ∈ C∞0 (R), u ∈ C2

b (Rm) and the
function U be given by (35). Then U belongs to the domain of the generator L
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of the Dirichlet form E, that is Friedrich’s extension of (L,FC) (see (18) for
the definition of L on FC). Moreover,

LU(g) =
1

2

 m∑
i,j=1

∂i∂ju

(∫ 1

0

α(g(s))ds

)
·
∫ 1

0

α′i(g(s))α′j(g(s))ds

+

m∑
j=1

∂ju

(∫ 1

0

α(g(s))ds

)
·
∫ 1

0

α′′j (g(s))

mg(s)
ds

ϕ(‖g‖22)

+

m∑
j=1

∂ju

(∫ 1

0

α(g(s))ds

)
ϕ′(‖g‖22)

∫ 1

0

α′(g(s))g(s)ds

+u

(∫ 1

0

α(g(s))ds

)[
2ϕ′′(‖g‖22)‖g‖22 + ϕ′(‖g‖22) · ]g

]
, g ∈ S↑ ∩ L↑2(ξ),

(37)

where mg(s) = Leb{r ∈ [0, 1] : g(r) = g(s)} = Leb g−1(g(s)), s ∈ [0, 1].

Proof To prove the proposition, it is enough to show that for each V ∈ FC

E(U, V ) = −〈LU, V 〉L2(Ξ),

where LU is defined by (37). The proof of this fact is similar to the proof of
Theorem 3, using the trivial relation DU = pr·∇L2U = ∇L2U . ut

We set

M ′α(t) := 〈α, µt〉 − 〈α, µ0〉 −
∫ t

0

Γ (µs)ds, t ≥ 0,

where 〈α, Γ (ν)〉 = 1
2

∑
x∈supp ν α

′′(x), α ∈ C∞0 (R). Using the martingale
problem for X and Proposition 13, it is easy to obtain the following statement.

Theorem 8 There exists an E-exceptional subset N of L↑2(ξ) such that for

all g ∈ L↑2(ξ) \ N , α ∈ C∞0 (R) and each (Ft)-stopping time τ satisfying
Pg{τ < ζ} = 1 and EgdW(µτt ,Leb)2 < ∞, t ≥ 0, the process Mτ

α(t), t ≥ 0,
is a continuous square integrable (Ft)-martingale under Pg in L2(ξ) with the
quadratic variation ∫ t∧τ

0

〈
(α′)

2
, µs

〉
ds,

where µt, t ≥ 0, is defined by (33), µτt := µt∧τ and Mτ
α(t) := Mα(t ∧ τ).

The theorem immediately implies that µt, t ≥ 0, is a martingale solution
of equation (34) on [0, τ ].
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Corollary 7 If ξ is constant on some neighbourhoods of 0 and 1, then for
E-q.e. g ∈ L↑2(ξ) the process Mα(t), t ≥ 0, is a continuous square integrable
(Ft)-martingale under Pg in L2(ξ) with the quadratic variation∫ t

0

〈
(α′)

2
, µs

〉
ds,

where µt, t ≥ 0, is defined by (33).

Proof The corollary follows from Theorem 8 and the fact that Eg‖Xt‖22 <∞,

t ≥ 0, for E-q.e. g ∈ L↑2(ξ) (see Corollary 5). ut

Letting for measurable sets A,B ⊂ P2 and ν ∈ P2

dW(A,B) = ess inf{dW(ν1, ν2) : ν1 ∈ A, ν2 ∈ B},
dW(ν,A) = ess inf

ρ∈A
dW(ν, ρ),

we can prove the following theorem.

Theorem 9 Let ξ be a strictly increasing function and Σ be the push forward
of Ξ under the map ι. Then the following statements hold.

(i) For any measurable A,B ⊂ P2 with 0 < Σ(A) < ∞, 0 < Σ(B) < ∞
and A or B open we have

lim
t→0

t ln

∫
A

Pι−1ν{µt ∈ B}Σ(dν) = −dW(A,B)2

2
.

(ii) Let A be a non empty open subset of P2 with Σ(A) <∞ and let Θ be
any probability measure which is mutually absolutely continuous with respect

to Σ. Then the function vt = −t lnPι−1·{µt ∈ A} converges to dW(·,A)2

2 in the
following senses.

(a) vt · I{vt<∞} converges to dW(·,A)2

2 · I{dW(·,A)<∞} in Θ-probability as t→ 0.
(b) If F is a bounded function on [0,∞] that is continuous on [0,∞), then

F (vt) converges to F
(
dW(·,A)2

2

)
in L2(P2, Θ) as t→ 0.

Proof The statement follows from theorems 5 and 6 and the isometry of
L↑2(ξ) = L↑2 and P2. ut

A Appendix

A.1 L↑2(ξ)-functions

Let ξ be a bounded function from D↑ and, as before, L↑2(ξ) denote the set of functions from

L↑2 that are σ?(ξ)-measurable.

Remark 20 (i) The space L↑2(ξ) is closed in L↑2.
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(ii) Let f ∈ L↑2(ξ) and g be its modification from D↑, then g is σ?(ξ)-measurable.

In this section we give a convenient description of each function g ∈ L↑2(ξ) using its right
continuous modification.

Proposition 14 A function g ∈ L↑2 belongs to L↑2(ξ) if and only if for all a < b from [0, 1]
the equality ξ(a) = ξ(b) implies g(a) = g(b−) (Here, as usual, we take the modification of g
that belongs to D↑).

Proof Let g ∈ L↑2(ξ) and ξ(a) = ξ(b) for some a < b and f is σ(ξ) measurable with g = f
a.e. Note that such a function f exists according to Lemma 1.25 [28]. First, we note that
the sets

πr = ξ−1({r}) = {s ∈ [0, 1] : ξ(s) = r},
are the smallest in σ(ξ), i.e. for any non empty set A ∈ σ(ξ) satisfying A ⊆ πr we have
A = πr. Consequently, the set

B = {s ∈ [0, 1] : f(a) = f(s)} ∩ πξ(a)

coincides with πξ(a) (B is non empty, since a ∈ B). Next we note that [a, b] ⊆ πξ(a) = B,
since ξ is non decreasing and ξ(a) = ξ(b). Consequently, f(a) = f(s) for all s ∈ [a, b]. So,
trivially, the equality f = g a.e. yields g(a) = g(a+) = g(b−).

To prove the sufficiency, we first show that a function f is σ(ξ) measurable, if f is Borel
measurable and

ξ(a) = ξ(b) implies f(a) = f(b) for all a, b ∈ [0, 1]. (38)

Let us define the function η[ξ(0), ξ(1)]→ [0, 1], that will play a role of the inverse function
for ξ, as follows

η(r) = min{s ∈ [0, 1] : ξ(s) ≥ r}, r ∈ [ξ(0), ξ(1)].

Then it is easy to see that η satisfies the following properties

a) η is a non decreasing left-continuous function;
b) η(ξ(s)) = s̃, where s̃ = min{πξ(s)}.

Using these properties and setting φ(r) = f(η(r)), r ∈ [ξ(0), ξ(1)], we can easily see that
φ is a Borel function and

φ(ξ(s)) = f(η(ξ(s))) = f(s̃) = f(s), s ∈ [0, 1].

Thus, f is σ(ξ)-measurable, as a compositions of Borel function with ξ.
Let for all a < b the equality ξ(a) = ξ(b) implies g(a) = g(b−). We are going to find a

function f that satisfies (38) and coincides with g a.e. Denote the set of all discontinuous
points of g by Dg that is at most countable, since g is non decreasing. Next, for all b ∈ Dg
we note that b satisfies only one of the following properties

– ξ(a) 6= ξ(b) for all a 6= b;
– there exists a < b such that ξ(a) = ξ(b) and, consequently, g(a) = g(b−);
– there exists c > b such that ξ(b) = ξ(c) and, consequently, g(b) = g(c−).

Indeed, if there exist both a and c such that a < b < c and ξ(a) = ξ(b) = ξ(c) then
g(a) = g(c−). But it contradicts the assumption that b is a discontinuous point of g.

We define

f(s) =


g(s), if s ∈ [0, 1] \Dg ,
g(s), if s ∈ Dg and ξ(a) = ξ(s) for some a < s,

g(s−), if s ∈ Dg and ξ(s) = ξ(c) for some c > s.

Then f is a well-defined non decreasing function and, consequently, Borel measurable. More-
over, it is easily seen that f satisfies (38). So, f is σ(ξ)-measurable. Since Dg is at most
countable and {s : g(s) 6= f(s)} ⊆ Dg , we have that f = g a.e. So, g is σ?(ξ)-measurable,
by Lemma 1.25 [28]. It finishes the proof. ut
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A.2 Multivariate Bernstein polynomials

In this section we give a slight modification of the result stated in [58] about uniform
approximation of a function and its partial derivatives by Bernstein polynomials.

For a function f : [0, 1]k → R we define the Bernstein polynomials on [0, 1]k as follows

Bn(f ;x) =

n∑
j1,...,jk=0

f

(
j1

n
, . . . ,

jk

n

)
Cj1n . . . C

jk
n

· xj11 (1− x1)n−j1 . . . x
jk
k (1− xk)n−jk ,

where Cjn = n!
j!(n−j)! , j ∈ [n] ∪ {0}.

Proposition 15 If f ∈ C1(Rk), then

(i) {Bn(f ; ·)}n≥1 uniformly converges to f on [0, 1]k;

(ii) {∂iBn(f ; ·)}n≥1 uniformly converges to ∂if on [0, 1]k for all i ∈ [k].

Proof The statement is a partial case of Theorem 4 [58]. ut

Next we would like to have a sequence of polynomials that approximate a function f on
[−M,M ]k. We set for a fixed M > 0

fM (x) = f(2Mx−M),

PMn (f ;x) = Bn

(
fM ;

x

2M
+

1

2

)
−Bn

(
fM ;

1

2

)
.

(39)

We note that PMn (f ; 0) = 0. This property is important for us, since in this case the
composition PMn (f ;U) belongs to FC for Ui ∈ FC, i ∈ [k], (FC is an associative algebra
that does not contain constant functions).

The following proposition is a trivial consequence of the previous proposition.

Lemma 16 Let f ∈ C1(Rk) and f(0) = 0. Then PMn (f ; 0) = 0 and

(i) {PMn (f ; ·)}n≥1 uniformly converges to f on [−M,M ]k;

(ii) {∂iPMn (f ; ·)}n≥1 uniformly converges to ∂if on [−M,M ]k for all i ∈ [k].

A.3 Proof of auxiliary statements

A.3.1 Proof of Lemma 6

By Remark 5 (iii), prg h belongs to L↑2. So, we need only to show that it has a modification
taking a finite number of values. Consequently, using the linearity of prg and Remark 4, it
is enough to prove that for any H := [a, b) ⊂ [0, 1], prg IH has a modification that takes at
most three values.

We set Dn =
{
k
2n
, k ∈ Z

}
, Sn = σ{[a, b) : a < b, a, b ∈ Dn} and Fn = g−1(Sn). Let

us note that {Fn, n ∈ N}, is increasing, since {Sn, n ∈ N}, is. Moreover, it is clear that

σ(g) =

∞∨
n=1

Fn = σ

( ∞⋃
n=1

Fn

)
.

By Levi’s theorem (see, e.g. Theorem 1.5 [38]),

E(IH |Fn)→ E

(
IH

∣∣∣∣∣
∞∨
n=1

Fn

)
a.e., as n→∞, (40)
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where E denotes the expectation on the probability space ([0, 1],B([0, 1]),Leb). Since each
element of Fn can be written as a finite or a countable union of disjoint sets Gk,n =

g−1
([

k
2n
, k+1

2n

))
, k ∈ Z, we obtain

E(IH |Fn) =
∑
k∈Z

IGk,n
Leb(Gk,n)

EIH∩Gk,n .

Next, by monotonicity of g, the set H can be covered by a finite number of Gk,n, i.e there
exist integer numbers p1 < p2 such that

– H̃ :=
⋃p2−1
k=p1+1Gk,n ⊆ H = [a, b);

– a ∈ Gp1,n, b ∈ Gp2,n;
– for each k < p1 or k > p2, Gk,n ∩H = ∅.

Thus,

E(IH |Fn) =
IGp1,n

Leb(Gp1,n)
EIH∩Gp1,n +

IGp2,n
Leb(Gp2,n)

EIH∩Gp2,n +
I
H̃

Leb(H̃)
EI
H̃
.

Hence E(IH |Fn) takes at most three values. By (40) and Remark 5, prg IH also takes at
most three values. It proves the lemma.

A.3.2 Proof of Proposition 12

Here we will use the probabilistic approach. We will consider functions from L↑2(ξ) as random
elements on the probability space ([0, 1],B([0, 1]),Leb).

We note that the sequence of σ-algebras

Sn = σ

(
πni :=

[
i− 1

2n
,
i

2n

)
, i ∈ [2n]

)
, n ∈ N,

increases to B([0, 1]). Thus, by the Levy theorem (see, e.g. Theorem 1.5 [38]), for each

g ∈ L↑2(ξ)

gn := E(g|Sn) =

2n∑
i=1

〈g, hni 〉Iπni → g a.s. as n→∞,

where hni = 2nIπni . Consequently, by the dominated convergence theorem,

∫ 1

0
α(gn(s))ds =

2n∑
i=1

α(〈g, hni 〉)
1

2n
→
∫ 1

0
α(g(s))ds as n→∞.

Next we define

Un(g) =

∫ 1

0
α(gn(s))ds · ϕ(‖g‖22), g ∈ L↑2(ξ),

and note that Un ∈ FC. Moreover, for all g ∈ L↑2(ξ)

DUn(g) =
1

2n

2n∑
i=1

α′(〈g, hni 〉) prg h
n
i ϕ(‖g‖22) + 2

∫ 1

0
α(gn(s))ds · ϕ′(‖g‖22)g

= prg α
′(gn)ϕ(‖g‖22) + 2

∫ 1

0
α(gn(s))ds · ϕ′(‖g‖22)g.

By the dominated convergence theorem (for conditional expectations) and Remark 5 (ii),

prg α
′(gn) = E(α′(gn)|σ?(g))→ E(α′(g)|σ?(g)) = α′(g) a.s. as n→∞.
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Thus, using the dominated convergence theorem again, we have

Un → U and ‖DUn −DU‖2 → 0 in L2(Ξ) as n→∞,

where U(g) =
∫ 1
0 α(g(s))ds ·ϕ(‖g‖22) and DU(g) = α′(g)ϕ(‖g‖22)+2

∫ 1
0 α(g(s))ds ·ϕ′(‖g‖22)g,

g ∈ L↑2(ξ). The proposition is proved.
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